1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
// Copyright 2016 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

pub use self::Integer::*;
pub use self::Primitive::*;

use session::{self, DataTypeKind, Session};
use ty::{self, Ty, TyCtxt, TypeFoldable, ReprOptions, ReprFlags};

use syntax::ast::{self, FloatTy, IntTy, UintTy};
use syntax::attr;
use syntax_pos::DUMMY_SP;

use std::cmp;
use std::fmt;
use std::i128;
use std::iter;
use std::mem;
use std::ops::{Add, Sub, Mul, AddAssign, Deref, RangeInclusive};

use ich::StableHashingContext;
use rustc_data_structures::stable_hasher::{HashStable, StableHasher,
                                           StableHasherResult};

/// Parsed [Data layout](http://llvm.org/docs/LangRef.html#data-layout)
/// for a target, which contains everything needed to compute layouts.
pub struct TargetDataLayout {
    pub endian: Endian,
    pub i1_align: Align,
    pub i8_align: Align,
    pub i16_align: Align,
    pub i32_align: Align,
    pub i64_align: Align,
    pub i128_align: Align,
    pub f32_align: Align,
    pub f64_align: Align,
    pub pointer_size: Size,
    pub pointer_align: Align,
    pub aggregate_align: Align,

    /// Alignments for vector types.
    pub vector_align: Vec<(Size, Align)>
}

impl Default for TargetDataLayout {
    /// Creates an instance of `TargetDataLayout`.
    fn default() -> TargetDataLayout {
        TargetDataLayout {
            endian: Endian::Big,
            i1_align: Align::from_bits(8, 8).unwrap(),
            i8_align: Align::from_bits(8, 8).unwrap(),
            i16_align: Align::from_bits(16, 16).unwrap(),
            i32_align: Align::from_bits(32, 32).unwrap(),
            i64_align: Align::from_bits(32, 64).unwrap(),
            i128_align: Align::from_bits(32, 64).unwrap(),
            f32_align: Align::from_bits(32, 32).unwrap(),
            f64_align: Align::from_bits(64, 64).unwrap(),
            pointer_size: Size::from_bits(64),
            pointer_align: Align::from_bits(64, 64).unwrap(),
            aggregate_align: Align::from_bits(0, 64).unwrap(),
            vector_align: vec![
                (Size::from_bits(64), Align::from_bits(64, 64).unwrap()),
                (Size::from_bits(128), Align::from_bits(128, 128).unwrap())
            ]
        }
    }
}

impl TargetDataLayout {
    pub fn parse(sess: &Session) -> TargetDataLayout {
        // Parse a bit count from a string.
        let parse_bits = |s: &str, kind: &str, cause: &str| {
            s.parse::<u64>().unwrap_or_else(|err| {
                sess.err(&format!("invalid {} `{}` for `{}` in \"data-layout\": {}",
                                  kind, s, cause, err));
                0
            })
        };

        // Parse a size string.
        let size = |s: &str, cause: &str| {
            Size::from_bits(parse_bits(s, "size", cause))
        };

        // Parse an alignment string.
        let align = |s: &[&str], cause: &str| {
            if s.is_empty() {
                sess.err(&format!("missing alignment for `{}` in \"data-layout\"", cause));
            }
            let abi = parse_bits(s[0], "alignment", cause);
            let pref = s.get(1).map_or(abi, |pref| parse_bits(pref, "alignment", cause));
            Align::from_bits(abi, pref).unwrap_or_else(|err| {
                sess.err(&format!("invalid alignment for `{}` in \"data-layout\": {}",
                                  cause, err));
                Align::from_bits(8, 8).unwrap()
            })
        };

        let mut dl = TargetDataLayout::default();
        let mut i128_align_src = 64;
        for spec in sess.target.target.data_layout.split("-") {
            match &spec.split(":").collect::<Vec<_>>()[..] {
                &["e"] => dl.endian = Endian::Little,
                &["E"] => dl.endian = Endian::Big,
                &["a", ref a..] => dl.aggregate_align = align(a, "a"),
                &["f32", ref a..] => dl.f32_align = align(a, "f32"),
                &["f64", ref a..] => dl.f64_align = align(a, "f64"),
                &[p @ "p", s, ref a..] | &[p @ "p0", s, ref a..] => {
                    dl.pointer_size = size(s, p);
                    dl.pointer_align = align(a, p);
                }
                &[s, ref a..] if s.starts_with("i") => {
                    let bits = match s[1..].parse::<u64>() {
                        Ok(bits) => bits,
                        Err(_) => {
                            size(&s[1..], "i"); // For the user error.
                            continue;
                        }
                    };
                    let a = align(a, s);
                    match bits {
                        1 => dl.i1_align = a,
                        8 => dl.i8_align = a,
                        16 => dl.i16_align = a,
                        32 => dl.i32_align = a,
                        64 => dl.i64_align = a,
                        _ => {}
                    }
                    if bits >= i128_align_src && bits <= 128 {
                        // Default alignment for i128 is decided by taking the alignment of
                        // largest-sized i{64...128}.
                        i128_align_src = bits;
                        dl.i128_align = a;
                    }
                }
                &[s, ref a..] if s.starts_with("v") => {
                    let v_size = size(&s[1..], "v");
                    let a = align(a, s);
                    if let Some(v) = dl.vector_align.iter_mut().find(|v| v.0 == v_size) {
                        v.1 = a;
                        continue;
                    }
                    // No existing entry, add a new one.
                    dl.vector_align.push((v_size, a));
                }
                _ => {} // Ignore everything else.
            }
        }

        // Perform consistency checks against the Target information.
        let endian_str = match dl.endian {
            Endian::Little => "little",
            Endian::Big => "big"
        };
        if endian_str != sess.target.target.target_endian {
            sess.err(&format!("inconsistent target specification: \"data-layout\" claims \
                               architecture is {}-endian, while \"target-endian\" is `{}`",
                              endian_str, sess.target.target.target_endian));
        }

        if dl.pointer_size.bits().to_string() != sess.target.target.target_pointer_width {
            sess.err(&format!("inconsistent target specification: \"data-layout\" claims \
                               pointers are {}-bit, while \"target-pointer-width\" is `{}`",
                              dl.pointer_size.bits(), sess.target.target.target_pointer_width));
        }

        dl
    }

    /// Return exclusive upper bound on object size.
    ///
    /// The theoretical maximum object size is defined as the maximum positive `isize` value.
    /// This ensures that the `offset` semantics remain well-defined by allowing it to correctly
    /// index every address within an object along with one byte past the end, along with allowing
    /// `isize` to store the difference between any two pointers into an object.
    ///
    /// The upper bound on 64-bit currently needs to be lower because LLVM uses a 64-bit integer
    /// to represent object size in bits. It would need to be 1 << 61 to account for this, but is
    /// currently conservatively bounded to 1 << 47 as that is enough to cover the current usable
    /// address space on 64-bit ARMv8 and x86_64.
    pub fn obj_size_bound(&self) -> u64 {
        match self.pointer_size.bits() {
            16 => 1 << 15,
            32 => 1 << 31,
            64 => 1 << 47,
            bits => bug!("obj_size_bound: unknown pointer bit size {}", bits)
        }
    }

    pub fn ptr_sized_integer(&self) -> Integer {
        match self.pointer_size.bits() {
            16 => I16,
            32 => I32,
            64 => I64,
            bits => bug!("ptr_sized_integer: unknown pointer bit size {}", bits)
        }
    }

    pub fn vector_align(&self, vec_size: Size) -> Align {
        for &(size, align) in &self.vector_align {
            if size == vec_size {
                return align;
            }
        }
        // Default to natural alignment, which is what LLVM does.
        // That is, use the size, rounded up to a power of 2.
        let align = vec_size.bytes().next_power_of_two();
        Align::from_bytes(align, align).unwrap()
    }
}

pub trait HasDataLayout: Copy {
    fn data_layout(&self) -> &TargetDataLayout;
}

impl<'a> HasDataLayout for &'a TargetDataLayout {
    fn data_layout(&self) -> &TargetDataLayout {
        self
    }
}

/// Endianness of the target, which must match cfg(target-endian).
#[derive(Copy, Clone)]
pub enum Endian {
    Little,
    Big
}

/// Size of a type in bytes.
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
pub struct Size {
    raw: u64
}

impl Size {
    pub fn from_bits(bits: u64) -> Size {
        // Avoid potential overflow from `bits + 7`.
        Size::from_bytes(bits / 8 + ((bits % 8) + 7) / 8)
    }

    pub fn from_bytes(bytes: u64) -> Size {
        if bytes >= (1 << 61) {
            bug!("Size::from_bytes: {} bytes in bits doesn't fit in u64", bytes)
        }
        Size {
            raw: bytes
        }
    }

    pub fn bytes(self) -> u64 {
        self.raw
    }

    pub fn bits(self) -> u64 {
        self.bytes() * 8
    }

    pub fn abi_align(self, align: Align) -> Size {
        let mask = align.abi() - 1;
        Size::from_bytes((self.bytes() + mask) & !mask)
    }

    pub fn is_abi_aligned(self, align: Align) -> bool {
        let mask = align.abi() - 1;
        self.bytes() & mask == 0
    }

    pub fn checked_add<C: HasDataLayout>(self, offset: Size, cx: C) -> Option<Size> {
        let dl = cx.data_layout();

        // Each Size is less than dl.obj_size_bound(), so the sum is
        // also less than 1 << 62 (and therefore can't overflow).
        let bytes = self.bytes() + offset.bytes();

        if bytes < dl.obj_size_bound() {
            Some(Size::from_bytes(bytes))
        } else {
            None
        }
    }

    pub fn checked_mul<C: HasDataLayout>(self, count: u64, cx: C) -> Option<Size> {
        let dl = cx.data_layout();

        match self.bytes().checked_mul(count) {
            Some(bytes) if bytes < dl.obj_size_bound() => {
                Some(Size::from_bytes(bytes))
            }
            _ => None
        }
    }
}

// Panicking addition, subtraction and multiplication for convenience.
// Avoid during layout computation, return `LayoutError` instead.

impl Add for Size {
    type Output = Size;
    fn add(self, other: Size) -> Size {
        // Each Size is less than 1 << 61, so the sum is
        // less than 1 << 62 (and therefore can't overflow).
        Size::from_bytes(self.bytes() + other.bytes())
    }
}

impl Sub for Size {
    type Output = Size;
    fn sub(self, other: Size) -> Size {
        // Each Size is less than 1 << 61, so an underflow
        // would result in a value larger than 1 << 61,
        // which Size::from_bytes will catch for us.
        Size::from_bytes(self.bytes() - other.bytes())
    }
}

impl Mul<u64> for Size {
    type Output = Size;
    fn mul(self, count: u64) -> Size {
        match self.bytes().checked_mul(count) {
            Some(bytes) => Size::from_bytes(bytes),
            None => {
                bug!("Size::mul: {} * {} doesn't fit in u64", self.bytes(), count)
            }
        }
    }
}

impl AddAssign for Size {
    fn add_assign(&mut self, other: Size) {
        *self = *self + other;
    }
}

/// Alignment of a type in bytes, both ABI-mandated and preferred.
/// Each field is a power of two, giving the alignment a maximum
/// value of 2^(2^8 - 1), which is limited by LLVM to a i32, with
/// a maximum capacity of 2^31 - 1 or 2147483647.
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
pub struct Align {
    abi: u8,
    pref: u8,
}

impl Align {
    pub fn from_bits(abi: u64, pref: u64) -> Result<Align, String> {
        Align::from_bytes(Size::from_bits(abi).bytes(),
                          Size::from_bits(pref).bytes())
    }

    pub fn from_bytes(abi: u64, pref: u64) -> Result<Align, String> {
        let log2 = |align: u64| {
            // Treat an alignment of 0 bytes like 1-byte alignment.
            if align == 0 {
                return Ok(0);
            }

            let mut bytes = align;
            let mut pow: u8 = 0;
            while (bytes & 1) == 0 {
                pow += 1;
                bytes >>= 1;
            }
            if bytes != 1 {
                Err(format!("`{}` is not a power of 2", align))
            } else if pow > 30 {
                Err(format!("`{}` is too large", align))
            } else {
                Ok(pow)
            }
        };

        Ok(Align {
            abi: log2(abi)?,
            pref: log2(pref)?,
        })
    }

    pub fn abi(self) -> u64 {
        1 << self.abi
    }

    pub fn pref(self) -> u64 {
        1 << self.pref
    }

    pub fn abi_bits(self) -> u64 {
        self.abi() * 8
    }

    pub fn pref_bits(self) -> u64 {
        self.pref() * 8
    }

    pub fn min(self, other: Align) -> Align {
        Align {
            abi: cmp::min(self.abi, other.abi),
            pref: cmp::min(self.pref, other.pref),
        }
    }

    pub fn max(self, other: Align) -> Align {
        Align {
            abi: cmp::max(self.abi, other.abi),
            pref: cmp::max(self.pref, other.pref),
        }
    }
}

/// Integers, also used for enum discriminants.
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
pub enum Integer {
    I8,
    I16,
    I32,
    I64,
    I128,
}

impl<'a, 'tcx> Integer {
    pub fn size(&self) -> Size {
        match *self {
            I8 => Size::from_bytes(1),
            I16 => Size::from_bytes(2),
            I32 => Size::from_bytes(4),
            I64  => Size::from_bytes(8),
            I128  => Size::from_bytes(16),
        }
    }

    pub fn align<C: HasDataLayout>(&self, cx: C) -> Align {
        let dl = cx.data_layout();

        match *self {
            I8 => dl.i8_align,
            I16 => dl.i16_align,
            I32 => dl.i32_align,
            I64 => dl.i64_align,
            I128 => dl.i128_align,
        }
    }

    pub fn to_ty(&self, tcx: TyCtxt<'a, 'tcx, 'tcx>, signed: bool) -> Ty<'tcx> {
        match (*self, signed) {
            (I8, false) => tcx.types.u8,
            (I16, false) => tcx.types.u16,
            (I32, false) => tcx.types.u32,
            (I64, false) => tcx.types.u64,
            (I128, false) => tcx.types.u128,
            (I8, true) => tcx.types.i8,
            (I16, true) => tcx.types.i16,
            (I32, true) => tcx.types.i32,
            (I64, true) => tcx.types.i64,
            (I128, true) => tcx.types.i128,
        }
    }

    /// Find the smallest Integer type which can represent the signed value.
    pub fn fit_signed(x: i128) -> Integer {
        match x {
            -0x0000_0000_0000_0080...0x0000_0000_0000_007f => I8,
            -0x0000_0000_0000_8000...0x0000_0000_0000_7fff => I16,
            -0x0000_0000_8000_0000...0x0000_0000_7fff_ffff => I32,
            -0x8000_0000_0000_0000...0x7fff_ffff_ffff_ffff => I64,
            _ => I128
        }
    }

    /// Find the smallest Integer type which can represent the unsigned value.
    pub fn fit_unsigned(x: u128) -> Integer {
        match x {
            0...0x0000_0000_0000_00ff => I8,
            0...0x0000_0000_0000_ffff => I16,
            0...0x0000_0000_ffff_ffff => I32,
            0...0xffff_ffff_ffff_ffff => I64,
            _ => I128,
        }
    }

    /// Find the smallest integer with the given alignment.
    pub fn for_abi_align<C: HasDataLayout>(cx: C, align: Align) -> Option<Integer> {
        let dl = cx.data_layout();

        let wanted = align.abi();
        for &candidate in &[I8, I16, I32, I64, I128] {
            let ty = Int(candidate, false);
            if wanted == ty.align(dl).abi() && wanted == ty.size(dl).bytes() {
                return Some(candidate);
            }
        }
        None
    }

    /// Get the Integer type from an attr::IntType.
    pub fn from_attr<C: HasDataLayout>(cx: C, ity: attr::IntType) -> Integer {
        let dl = cx.data_layout();

        match ity {
            attr::SignedInt(IntTy::I8) | attr::UnsignedInt(UintTy::U8) => I8,
            attr::SignedInt(IntTy::I16) | attr::UnsignedInt(UintTy::U16) => I16,
            attr::SignedInt(IntTy::I32) | attr::UnsignedInt(UintTy::U32) => I32,
            attr::SignedInt(IntTy::I64) | attr::UnsignedInt(UintTy::U64) => I64,
            attr::SignedInt(IntTy::I128) | attr::UnsignedInt(UintTy::U128) => I128,
            attr::SignedInt(IntTy::Is) | attr::UnsignedInt(UintTy::Us) => {
                dl.ptr_sized_integer()
            }
        }
    }

    /// Find the appropriate Integer type and signedness for the given
    /// signed discriminant range and #[repr] attribute.
    /// N.B.: u128 values above i128::MAX will be treated as signed, but
    /// that shouldn't affect anything, other than maybe debuginfo.
    fn repr_discr(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                  ty: Ty<'tcx>,
                  repr: &ReprOptions,
                  min: i128,
                  max: i128)
                  -> (Integer, bool) {
        // Theoretically, negative values could be larger in unsigned representation
        // than the unsigned representation of the signed minimum. However, if there
        // are any negative values, the only valid unsigned representation is u128
        // which can fit all i128 values, so the result remains unaffected.
        let unsigned_fit = Integer::fit_unsigned(cmp::max(min as u128, max as u128));
        let signed_fit = cmp::max(Integer::fit_signed(min), Integer::fit_signed(max));

        let mut min_from_extern = None;
        let min_default = I8;

        if let Some(ity) = repr.int {
            let discr = Integer::from_attr(tcx, ity);
            let fit = if ity.is_signed() { signed_fit } else { unsigned_fit };
            if discr < fit {
                bug!("Integer::repr_discr: `#[repr]` hint too small for \
                  discriminant range of enum `{}", ty)
            }
            return (discr, ity.is_signed());
        }

        if repr.c() {
            match &tcx.sess.target.target.arch[..] {
                // WARNING: the ARM EABI has two variants; the one corresponding
                // to `at_least == I32` appears to be used on Linux and NetBSD,
                // but some systems may use the variant corresponding to no
                // lower bound.  However, we don't run on those yet...?
                "arm" => min_from_extern = Some(I32),
                _ => min_from_extern = Some(I32),
            }
        }

        let at_least = min_from_extern.unwrap_or(min_default);

        // If there are no negative values, we can use the unsigned fit.
        if min >= 0 {
            (cmp::max(unsigned_fit, at_least), false)
        } else {
            (cmp::max(signed_fit, at_least), true)
        }
    }
}

/// Fundamental unit of memory access and layout.
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
pub enum Primitive {
    /// The `bool` is the signedness of the `Integer` type.
    ///
    /// One would think we would not care about such details this low down,
    /// but some ABIs are described in terms of C types and ISAs where the
    /// integer arithmetic is done on {sign,zero}-extended registers, e.g.
    /// a negative integer passed by zero-extension will appear positive in
    /// the callee, and most operations on it will produce the wrong values.
    Int(Integer, bool),
    F32,
    F64,
    Pointer
}

impl<'a, 'tcx> Primitive {
    pub fn size<C: HasDataLayout>(self, cx: C) -> Size {
        let dl = cx.data_layout();

        match self {
            Int(i, _) => i.size(),
            F32 => Size::from_bits(32),
            F64 => Size::from_bits(64),
            Pointer => dl.pointer_size
        }
    }

    pub fn align<C: HasDataLayout>(self, cx: C) -> Align {
        let dl = cx.data_layout();

        match self {
            Int(i, _) => i.align(dl),
            F32 => dl.f32_align,
            F64 => dl.f64_align,
            Pointer => dl.pointer_align
        }
    }

    pub fn to_ty(&self, tcx: TyCtxt<'a, 'tcx, 'tcx>) -> Ty<'tcx> {
        match *self {
            Int(i, signed) => i.to_ty(tcx, signed),
            F32 => tcx.types.f32,
            F64 => tcx.types.f64,
            Pointer => tcx.mk_mut_ptr(tcx.mk_nil()),
        }
    }
}

/// Information about one scalar component of a Rust type.
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub struct Scalar {
    pub value: Primitive,

    /// Inclusive wrap-around range of valid values, that is, if
    /// min > max, it represents min..=u128::MAX followed by 0..=max.
    // FIXME(eddyb) always use the shortest range, e.g. by finding
    // the largest space between two consecutive valid values and
    // taking everything else as the (shortest) valid range.
    pub valid_range: RangeInclusive<u128>,
}

impl Scalar {
    pub fn is_bool(&self) -> bool {
        if let Int(I8, _) = self.value {
            self.valid_range == (0..=1)
        } else {
            false
        }
    }
}

/// The first half of a fat pointer.
/// - For a trait object, this is the address of the box.
/// - For a slice, this is the base address.
pub const FAT_PTR_ADDR: usize = 0;

/// The second half of a fat pointer.
/// - For a trait object, this is the address of the vtable.
/// - For a slice, this is the length.
pub const FAT_PTR_EXTRA: usize = 1;

/// Describes how the fields of a type are located in memory.
#[derive(PartialEq, Eq, Hash, Debug)]
pub enum FieldPlacement {
    /// All fields start at no offset. The `usize` is the field count.
    Union(usize),

    /// Array/vector-like placement, with all fields of identical types.
    Array {
        stride: Size,
        count: u64
    },

    /// Struct-like placement, with precomputed offsets.
    ///
    /// Fields are guaranteed to not overlap, but note that gaps
    /// before, between and after all the fields are NOT always
    /// padding, and as such their contents may not be discarded.
    /// For example, enum variants leave a gap at the start,
    /// where the discriminant field in the enum layout goes.
    Arbitrary {
        /// Offsets for the first byte of each field,
        /// ordered to match the source definition order.
        /// This vector does not go in increasing order.
        // FIXME(eddyb) use small vector optimization for the common case.
        offsets: Vec<Size>,

        /// Maps source order field indices to memory order indices,
        /// depending how fields were permuted.
        // FIXME(camlorn) also consider small vector  optimization here.
        memory_index: Vec<u32>
    }
}

impl FieldPlacement {
    pub fn count(&self) -> usize {
        match *self {
            FieldPlacement::Union(count) => count,
            FieldPlacement::Array { count, .. } => {
                let usize_count = count as usize;
                assert_eq!(usize_count as u64, count);
                usize_count
            }
            FieldPlacement::Arbitrary { ref offsets, .. } => offsets.len()
        }
    }

    pub fn offset(&self, i: usize) -> Size {
        match *self {
            FieldPlacement::Union(_) => Size::from_bytes(0),
            FieldPlacement::Array { stride, count } => {
                let i = i as u64;
                assert!(i < count);
                stride * i
            }
            FieldPlacement::Arbitrary { ref offsets, .. } => offsets[i]
        }
    }

    pub fn memory_index(&self, i: usize) -> usize {
        match *self {
            FieldPlacement::Union(_) |
            FieldPlacement::Array { .. } => i,
            FieldPlacement::Arbitrary { ref memory_index, .. } => {
                let r = memory_index[i];
                assert_eq!(r as usize as u32, r);
                r as usize
            }
        }
    }

    /// Get source indices of the fields by increasing offsets.
    #[inline]
    pub fn index_by_increasing_offset<'a>(&'a self) -> impl iter::Iterator<Item=usize>+'a {
        let mut inverse_small = [0u8; 64];
        let mut inverse_big = vec![];
        let use_small = self.count() <= inverse_small.len();

        // We have to write this logic twice in order to keep the array small.
        if let FieldPlacement::Arbitrary { ref memory_index, .. } = *self {
            if use_small {
                for i in 0..self.count() {
                    inverse_small[memory_index[i] as usize] = i as u8;
                }
            } else {
                inverse_big = vec![0; self.count()];
                for i in 0..self.count() {
                    inverse_big[memory_index[i] as usize] = i as u32;
                }
            }
        }

        (0..self.count()).map(move |i| {
            match *self {
                FieldPlacement::Union(_) |
                FieldPlacement::Array { .. } => i,
                FieldPlacement::Arbitrary { .. } => {
                    if use_small { inverse_small[i] as usize }
                    else { inverse_big[i] as usize }
                }
            }
        })
    }
}

/// Describes how values of the type are passed by target ABIs,
/// in terms of categories of C types there are ABI rules for.
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub enum Abi {
    Uninhabited,
    Scalar(Scalar),
    ScalarPair(Scalar, Scalar),
    Vector {
        element: Scalar,
        count: u64
    },
    Aggregate {
        /// If true, the size is exact, otherwise it's only a lower bound.
        sized: bool,
        packed: bool
    }
}

impl Abi {
    /// Returns true if the layout corresponds to an unsized type.
    pub fn is_unsized(&self) -> bool {
        match *self {
            Abi::Uninhabited |
            Abi::Scalar(_) |
            Abi::ScalarPair(..) |
            Abi::Vector { .. } => false,
            Abi::Aggregate { sized, .. } => !sized
        }
    }

    /// Returns true if the fields of the layout are packed.
    pub fn is_packed(&self) -> bool {
        match *self {
            Abi::Uninhabited |
            Abi::Scalar(_) |
            Abi::ScalarPair(..) |
            Abi::Vector { .. } => false,
            Abi::Aggregate { packed, .. } => packed
        }
    }
}

#[derive(PartialEq, Eq, Hash, Debug)]
pub enum Variants {
    /// Single enum variants, structs/tuples, unions, and all non-ADTs.
    Single {
        index: usize
    },

    /// General-case enums: for each case there is a struct, and they all have
    /// all space reserved for the discriminant, and their first field starts
    /// at a non-0 offset, after where the discriminant would go.
    Tagged {
        discr: Scalar,
        variants: Vec<LayoutDetails>,
    },

    /// Multiple cases distinguished by a niche (values invalid for a type):
    /// the variant `dataful_variant` contains a niche at an arbitrary
    /// offset (field 0 of the enum), which for a variant with discriminant
    /// `d` is set to `(d - niche_variants.start).wrapping_add(niche_start)`.
    ///
    /// For example, `Option<(usize, &T)>`  is represented such that
    /// `None` has a null pointer for the second tuple field, and
    /// `Some` is the identity function (with a non-null reference).
    NicheFilling {
        dataful_variant: usize,
        niche_variants: RangeInclusive<usize>,
        niche: Scalar,
        niche_start: u128,
        variants: Vec<LayoutDetails>,
    }
}

#[derive(Copy, Clone, Debug)]
pub enum LayoutError<'tcx> {
    Unknown(Ty<'tcx>),
    SizeOverflow(Ty<'tcx>)
}

impl<'tcx> fmt::Display for LayoutError<'tcx> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match *self {
            LayoutError::Unknown(ty) => {
                write!(f, "the type `{:?}` has an unknown layout", ty)
            }
            LayoutError::SizeOverflow(ty) => {
                write!(f, "the type `{:?}` is too big for the current architecture", ty)
            }
        }
    }
}

#[derive(PartialEq, Eq, Hash, Debug)]
pub struct LayoutDetails {
    pub variants: Variants,
    pub fields: FieldPlacement,
    pub abi: Abi,
    pub align: Align,
    pub size: Size
}

impl LayoutDetails {
    fn scalar<C: HasDataLayout>(cx: C, scalar: Scalar) -> Self {
        let size = scalar.value.size(cx);
        let align = scalar.value.align(cx);
        LayoutDetails {
            variants: Variants::Single { index: 0 },
            fields: FieldPlacement::Union(0),
            abi: Abi::Scalar(scalar),
            size,
            align,
        }
    }

    fn uninhabited(field_count: usize) -> Self {
        let align = Align::from_bytes(1, 1).unwrap();
        LayoutDetails {
            variants: Variants::Single { index: 0 },
            fields: FieldPlacement::Union(field_count),
            abi: Abi::Uninhabited,
            align,
            size: Size::from_bytes(0)
        }
    }
}

fn layout_raw<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                        query: ty::ParamEnvAnd<'tcx, Ty<'tcx>>)
                        -> Result<&'tcx LayoutDetails, LayoutError<'tcx>>
{
    let (param_env, ty) = query.into_parts();

    let rec_limit = tcx.sess.recursion_limit.get();
    let depth = tcx.layout_depth.get();
    if depth > rec_limit {
        tcx.sess.fatal(
            &format!("overflow representing the type `{}`", ty));
    }

    tcx.layout_depth.set(depth+1);
    let layout = LayoutDetails::compute_uncached(tcx, param_env, ty);
    tcx.layout_depth.set(depth);

    layout
}

pub fn provide(providers: &mut ty::maps::Providers) {
    *providers = ty::maps::Providers {
        layout_raw,
        ..*providers
    };
}

impl<'a, 'tcx> LayoutDetails {
    fn compute_uncached(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                        param_env: ty::ParamEnv<'tcx>,
                        ty: Ty<'tcx>)
                        -> Result<&'tcx Self, LayoutError<'tcx>> {
        let cx = (tcx, param_env);
        let dl = cx.data_layout();
        let scalar_unit = |value: Primitive| {
            let bits = value.size(dl).bits();
            assert!(bits <= 128);
            Scalar {
                value,
                valid_range: 0..=(!0 >> (128 - bits))
            }
        };
        let scalar = |value: Primitive| {
            tcx.intern_layout(LayoutDetails::scalar(cx, scalar_unit(value)))
        };
        let scalar_pair = |a: Scalar, b: Scalar| {
            let align = a.value.align(dl).max(b.value.align(dl)).max(dl.aggregate_align);
            let b_offset = a.value.size(dl).abi_align(b.value.align(dl));
            let size = (b_offset + b.value.size(dl)).abi_align(align);
            LayoutDetails {
                variants: Variants::Single { index: 0 },
                fields: FieldPlacement::Arbitrary {
                    offsets: vec![Size::from_bytes(0), b_offset],
                    memory_index: vec![0, 1]
                },
                abi: Abi::ScalarPair(a, b),
                align,
                size
            }
        };

        #[derive(Copy, Clone, Debug)]
        enum StructKind {
            /// A tuple, closure, or univariant which cannot be coerced to unsized.
            AlwaysSized,
            /// A univariant, the last field of which may be coerced to unsized.
            MaybeUnsized,
            /// A univariant, but with a prefix of an arbitrary size & alignment (e.g. enum tag).
            Prefixed(Size, Align),
        }
        let univariant_uninterned = |fields: &[TyLayout], repr: &ReprOptions, kind| {
            let packed = repr.packed();
            if packed && repr.align > 0 {
                bug!("struct cannot be packed and aligned");
            }

            let mut align = if packed {
                dl.i8_align
            } else {
                dl.aggregate_align
            };

            let mut sized = true;
            let mut offsets = vec![Size::from_bytes(0); fields.len()];
            let mut inverse_memory_index: Vec<u32> = (0..fields.len() as u32).collect();

            // Anything with repr(C) or repr(packed) doesn't optimize.
            let mut optimize = (repr.flags & ReprFlags::IS_UNOPTIMISABLE).is_empty();
            if let StructKind::Prefixed(_, align) = kind {
                optimize &= align.abi() == 1;
            }

            if optimize {
                let end = if let StructKind::MaybeUnsized = kind {
                    fields.len() - 1
                } else {
                    fields.len()
                };
                let optimizing = &mut inverse_memory_index[..end];
                match kind {
                    StructKind::AlwaysSized |
                    StructKind::MaybeUnsized => {
                        optimizing.sort_by_key(|&x| {
                            // Place ZSTs first to avoid "interesting offsets",
                            // especially with only one or two non-ZST fields.
                            let f = &fields[x as usize];
                            (!f.is_zst(), cmp::Reverse(f.align.abi()))
                        })
                    }
                    StructKind::Prefixed(..) => {
                        optimizing.sort_by_key(|&x| fields[x as usize].align.abi());
                    }
                }
            }

            // inverse_memory_index holds field indices by increasing memory offset.
            // That is, if field 5 has offset 0, the first element of inverse_memory_index is 5.
            // We now write field offsets to the corresponding offset slot;
            // field 5 with offset 0 puts 0 in offsets[5].
            // At the bottom of this function, we use inverse_memory_index to produce memory_index.

            let mut offset = Size::from_bytes(0);

            if let StructKind::Prefixed(prefix_size, prefix_align) = kind {
                if !packed {
                    align = align.max(prefix_align);
                }
                offset = prefix_size.abi_align(prefix_align);
            }

            for &i in &inverse_memory_index {
                let field = fields[i as usize];
                if !sized {
                    bug!("univariant: field #{} of `{}` comes after unsized field",
                        offsets.len(), ty);
                }

                if field.abi == Abi::Uninhabited {
                    return Ok(LayoutDetails::uninhabited(fields.len()));
                }

                if field.is_unsized() {
                    sized = false;
                }

                // Invariant: offset < dl.obj_size_bound() <= 1<<61
                if !packed {
                    offset = offset.abi_align(field.align);
                    align = align.max(field.align);
                }

                debug!("univariant offset: {:?} field: {:#?}", offset, field);
                offsets[i as usize] = offset;

                offset = offset.checked_add(field.size, dl)
                    .ok_or(LayoutError::SizeOverflow(ty))?;
            }

            if repr.align > 0 {
                let repr_align = repr.align as u64;
                align = align.max(Align::from_bytes(repr_align, repr_align).unwrap());
                debug!("univariant repr_align: {:?}", repr_align);
            }

            debug!("univariant min_size: {:?}", offset);
            let min_size = offset;

            // As stated above, inverse_memory_index holds field indices by increasing offset.
            // This makes it an already-sorted view of the offsets vec.
            // To invert it, consider:
            // If field 5 has offset 0, offsets[0] is 5, and memory_index[5] should be 0.
            // Field 5 would be the first element, so memory_index is i:
            // Note: if we didn't optimize, it's already right.

            let mut memory_index;
            if optimize {
                memory_index = vec![0; inverse_memory_index.len()];

                for i in 0..inverse_memory_index.len() {
                    memory_index[inverse_memory_index[i] as usize]  = i as u32;
                }
            } else {
                memory_index = inverse_memory_index;
            }

            let size = min_size.abi_align(align);
            let mut abi = Abi::Aggregate {
                sized,
                packed
            };

            // Unpack newtype ABIs and find scalar pairs.
            if sized && size.bytes() > 0 {
                // All other fields must be ZSTs, and we need them to all start at 0.
                let mut zst_offsets =
                    offsets.iter().enumerate().filter(|&(i, _)| fields[i].is_zst());
                if zst_offsets.all(|(_, o)| o.bytes() == 0) {
                    let mut non_zst_fields =
                        fields.iter().enumerate().filter(|&(_, f)| !f.is_zst());

                    match (non_zst_fields.next(), non_zst_fields.next(), non_zst_fields.next()) {
                        // We have exactly one non-ZST field.
                        (Some((i, field)), None, None) => {
                            // Field fills the struct and it has a scalar or scalar pair ABI.
                            if offsets[i].bytes() == 0 &&
                               align.abi() == field.align.abi() &&
                               size == field.size {
                                match field.abi {
                                    // For plain scalars, or vectors of them, we can't unpack
                                    // newtypes for `#[repr(C)]`, as that affects C ABIs.
                                    Abi::Scalar(_) | Abi::Vector { .. } if optimize => {
                                        abi = field.abi.clone();
                                    }
                                    // But scalar pairs are Rust-specific and get
                                    // treated as aggregates by C ABIs anyway.
                                    Abi::ScalarPair(..) => {
                                        abi = field.abi.clone();
                                    }
                                    _ => {}
                                }
                            }
                        }

                        // Two non-ZST fields, and they're both scalars.
                        (Some((i, &TyLayout {
                            details: &LayoutDetails { abi: Abi::Scalar(ref a), .. }, ..
                        })), Some((j, &TyLayout {
                            details: &LayoutDetails { abi: Abi::Scalar(ref b), .. }, ..
                        })), None) => {
                            // Order by the memory placement, not source order.
                            let ((i, a), (j, b)) = if offsets[i] < offsets[j] {
                                ((i, a), (j, b))
                            } else {
                                ((j, b), (i, a))
                            };
                            let pair = scalar_pair(a.clone(), b.clone());
                            let pair_offsets = match pair.fields {
                                FieldPlacement::Arbitrary {
                                    ref offsets,
                                    ref memory_index
                                } => {
                                    assert_eq!(memory_index, &[0, 1]);
                                    offsets
                                }
                                _ => bug!()
                            };
                            if offsets[i] == pair_offsets[0] &&
                               offsets[j] == pair_offsets[1] &&
                               align == pair.align &&
                               size == pair.size {
                                // We can use `ScalarPair` only when it matches our
                                // already computed layout (including `#[repr(C)]`).
                                abi = pair.abi;
                            }
                        }

                        _ => {}
                    }
                }
            }

            Ok(LayoutDetails {
                variants: Variants::Single { index: 0 },
                fields: FieldPlacement::Arbitrary {
                    offsets,
                    memory_index
                },
                abi,
                align,
                size
            })
        };
        let univariant = |fields: &[TyLayout], repr: &ReprOptions, kind| {
            Ok(tcx.intern_layout(univariant_uninterned(fields, repr, kind)?))
        };
        assert!(!ty.has_infer_types());

        Ok(match ty.sty {
            // Basic scalars.
            ty::TyBool => {
                tcx.intern_layout(LayoutDetails::scalar(cx, Scalar {
                    value: Int(I8, false),
                    valid_range: 0..=1
                }))
            }
            ty::TyChar => {
                tcx.intern_layout(LayoutDetails::scalar(cx, Scalar {
                    value: Int(I32, false),
                    valid_range: 0..=0x10FFFF
                }))
            }
            ty::TyInt(ity) => {
                scalar(Int(Integer::from_attr(dl, attr::SignedInt(ity)), true))
            }
            ty::TyUint(ity) => {
                scalar(Int(Integer::from_attr(dl, attr::UnsignedInt(ity)), false))
            }
            ty::TyFloat(FloatTy::F32) => scalar(F32),
            ty::TyFloat(FloatTy::F64) => scalar(F64),
            ty::TyFnPtr(_) => {
                let mut ptr = scalar_unit(Pointer);
                ptr.valid_range.start = 1;
                tcx.intern_layout(LayoutDetails::scalar(cx, ptr))
            }

            // The never type.
            ty::TyNever => {
                tcx.intern_layout(LayoutDetails::uninhabited(0))
            }

            // Potentially-fat pointers.
            ty::TyRef(_, ty::TypeAndMut { ty: pointee, .. }) |
            ty::TyRawPtr(ty::TypeAndMut { ty: pointee, .. }) => {
                let mut data_ptr = scalar_unit(Pointer);
                if !ty.is_unsafe_ptr() {
                    data_ptr.valid_range.start = 1;
                }

                let pointee = tcx.normalize_associated_type_in_env(&pointee, param_env);
                if pointee.is_sized(tcx, param_env, DUMMY_SP) {
                    return Ok(tcx.intern_layout(LayoutDetails::scalar(cx, data_ptr)));
                }

                let unsized_part = tcx.struct_tail(pointee);
                let metadata = match unsized_part.sty {
                    ty::TyForeign(..) => {
                        return Ok(tcx.intern_layout(LayoutDetails::scalar(cx, data_ptr)));
                    }
                    ty::TySlice(_) | ty::TyStr => {
                        scalar_unit(Int(dl.ptr_sized_integer(), false))
                    }
                    ty::TyDynamic(..) => {
                        let mut vtable = scalar_unit(Pointer);
                        vtable.valid_range.start = 1;
                        vtable
                    }
                    _ => return Err(LayoutError::Unknown(unsized_part))
                };

                // Effectively a (ptr, meta) tuple.
                tcx.intern_layout(scalar_pair(data_ptr, metadata))
            }

            // Arrays and slices.
            ty::TyArray(element, mut count) => {
                if count.has_projections() {
                    count = tcx.normalize_associated_type_in_env(&count, param_env);
                    if count.has_projections() {
                        return Err(LayoutError::Unknown(ty));
                    }
                }

                let element = cx.layout_of(element)?;
                let count = count.val.to_const_int().unwrap().to_u64().unwrap();
                let size = element.size.checked_mul(count, dl)
                    .ok_or(LayoutError::SizeOverflow(ty))?;

                tcx.intern_layout(LayoutDetails {
                    variants: Variants::Single { index: 0 },
                    fields: FieldPlacement::Array {
                        stride: element.size,
                        count
                    },
                    abi: Abi::Aggregate {
                        sized: true,
                        packed: false
                    },
                    align: element.align,
                    size
                })
            }
            ty::TySlice(element) => {
                let element = cx.layout_of(element)?;
                tcx.intern_layout(LayoutDetails {
                    variants: Variants::Single { index: 0 },
                    fields: FieldPlacement::Array {
                        stride: element.size,
                        count: 0
                    },
                    abi: Abi::Aggregate {
                        sized: false,
                        packed: false
                    },
                    align: element.align,
                    size: Size::from_bytes(0)
                })
            }
            ty::TyStr => {
                tcx.intern_layout(LayoutDetails {
                    variants: Variants::Single { index: 0 },
                    fields: FieldPlacement::Array {
                        stride: Size::from_bytes(1),
                        count: 0
                    },
                    abi: Abi::Aggregate {
                        sized: false,
                        packed: false
                    },
                    align: dl.i8_align,
                    size: Size::from_bytes(0)
                })
            }

            // Odd unit types.
            ty::TyFnDef(..) => {
                univariant(&[], &ReprOptions::default(), StructKind::AlwaysSized)?
            }
            ty::TyDynamic(..) | ty::TyForeign(..) => {
                let mut unit = univariant_uninterned(&[], &ReprOptions::default(),
                  StructKind::AlwaysSized)?;
                match unit.abi {
                    Abi::Aggregate { ref mut sized, .. } => *sized = false,
                    _ => bug!()
                }
                tcx.intern_layout(unit)
            }

            // Tuples, generators and closures.
            ty::TyGenerator(def_id, ref substs, _) => {
                let tys = substs.field_tys(def_id, tcx);
                univariant(&tys.map(|ty| cx.layout_of(ty)).collect::<Result<Vec<_>, _>>()?,
                    &ReprOptions::default(),
                    StructKind::AlwaysSized)?
            }

            ty::TyClosure(def_id, ref substs) => {
                let tys = substs.upvar_tys(def_id, tcx);
                univariant(&tys.map(|ty| cx.layout_of(ty)).collect::<Result<Vec<_>, _>>()?,
                    &ReprOptions::default(),
                    StructKind::AlwaysSized)?
            }

            ty::TyTuple(tys, _) => {
                let kind = if tys.len() == 0 {
                    StructKind::AlwaysSized
                } else {
                    StructKind::MaybeUnsized
                };

                univariant(&tys.iter().map(|ty| cx.layout_of(ty)).collect::<Result<Vec<_>, _>>()?,
                    &ReprOptions::default(), kind)?
            }

            // SIMD vector types.
            ty::TyAdt(def, ..) if def.repr.simd() => {
                let element = cx.layout_of(ty.simd_type(tcx))?;
                let count = ty.simd_size(tcx) as u64;
                assert!(count > 0);
                let scalar = match element.abi {
                    Abi::Scalar(ref scalar) => scalar.clone(),
                    _ => {
                        tcx.sess.fatal(&format!("monomorphising SIMD type `{}` with \
                                                a non-machine element type `{}`",
                                                ty, element.ty));
                    }
                };
                let size = element.size.checked_mul(count, dl)
                    .ok_or(LayoutError::SizeOverflow(ty))?;
                let align = dl.vector_align(size);
                let size = size.abi_align(align);

                tcx.intern_layout(LayoutDetails {
                    variants: Variants::Single { index: 0 },
                    fields: FieldPlacement::Array {
                        stride: element.size,
                        count
                    },
                    abi: Abi::Vector {
                        element: scalar,
                        count
                    },
                    size,
                    align,
                })
            }

            // ADTs.
            ty::TyAdt(def, substs) => {
                // Cache the field layouts.
                let variants = def.variants.iter().map(|v| {
                    v.fields.iter().map(|field| {
                        cx.layout_of(field.ty(tcx, substs))
                    }).collect::<Result<Vec<_>, _>>()
                }).collect::<Result<Vec<_>, _>>()?;

                let (inh_first, inh_second) = {
                    let mut inh_variants = (0..variants.len()).filter(|&v| {
                        variants[v].iter().all(|f| f.abi != Abi::Uninhabited)
                    });
                    (inh_variants.next(), inh_variants.next())
                };
                if inh_first.is_none() {
                    // Uninhabited because it has no variants, or only uninhabited ones.
                    return Ok(tcx.intern_layout(LayoutDetails::uninhabited(0)));
                }

                if def.is_union() {
                    let packed = def.repr.packed();
                    if packed && def.repr.align > 0 {
                        bug!("Union cannot be packed and aligned");
                    }

                    let mut align = if def.repr.packed() {
                        dl.i8_align
                    } else {
                        dl.aggregate_align
                    };

                    if def.repr.align > 0 {
                        let repr_align = def.repr.align as u64;
                        align = align.max(
                            Align::from_bytes(repr_align, repr_align).unwrap());
                    }

                    let mut size = Size::from_bytes(0);
                    for field in &variants[0] {
                        assert!(!field.is_unsized());

                        if !packed {
                            align = align.max(field.align);
                        }
                        size = cmp::max(size, field.size);
                    }

                    return Ok(tcx.intern_layout(LayoutDetails {
                        variants: Variants::Single { index: 0 },
                        fields: FieldPlacement::Union(variants[0].len()),
                        abi: Abi::Aggregate {
                            sized: true,
                            packed
                        },
                        align,
                        size: size.abi_align(align)
                    }));
                }

                let is_struct = !def.is_enum() ||
                    // Only one variant is inhabited.
                    (inh_second.is_none() &&
                    // Representation optimizations are allowed.
                     !def.repr.inhibit_enum_layout_opt() &&
                    // Inhabited variant either has data ...
                     (!variants[inh_first.unwrap()].is_empty() ||
                    // ... or there other, uninhabited, variants.
                      variants.len() > 1));
                if is_struct {
                    // Struct, or univariant enum equivalent to a struct.
                    // (Typechecking will reject discriminant-sizing attrs.)

                    let v = inh_first.unwrap();
                    let kind = if def.is_enum() || variants[v].len() == 0 {
                        StructKind::AlwaysSized
                    } else {
                        let param_env = tcx.param_env(def.did);
                        let last_field = def.variants[v].fields.last().unwrap();
                        let always_sized = tcx.type_of(last_field.did)
                          .is_sized(tcx, param_env, DUMMY_SP);
                        if !always_sized { StructKind::MaybeUnsized }
                        else { StructKind::AlwaysSized }
                    };

                    let mut st = univariant_uninterned(&variants[v], &def.repr, kind)?;
                    st.variants = Variants::Single { index: v };
                    // Exclude 0 from the range of a newtype ABI NonZero<T>.
                    if Some(def.did) == cx.tcx().lang_items().non_zero() {
                        match st.abi {
                            Abi::Scalar(ref mut scalar) |
                            Abi::ScalarPair(ref mut scalar, _) => {
                                if scalar.valid_range.start == 0 {
                                    scalar.valid_range.start = 1;
                                }
                            }
                            _ => {}
                        }
                    }
                    return Ok(tcx.intern_layout(st));
                }

                let no_explicit_discriminants = def.variants.iter().enumerate()
                    .all(|(i, v)| v.discr == ty::VariantDiscr::Relative(i));

                // Niche-filling enum optimization.
                if !def.repr.inhibit_enum_layout_opt() && no_explicit_discriminants {
                    let mut dataful_variant = None;
                    let mut niche_variants = usize::max_value()..=0;

                    // Find one non-ZST variant.
                    'variants: for (v, fields) in variants.iter().enumerate() {
                        for f in fields {
                            if f.abi == Abi::Uninhabited {
                                continue 'variants;
                            }
                            if !f.is_zst() {
                                if dataful_variant.is_none() {
                                    dataful_variant = Some(v);
                                    continue 'variants;
                                } else {
                                    dataful_variant = None;
                                    break 'variants;
                                }
                            }
                        }
                        if niche_variants.start > v {
                            niche_variants.start = v;
                        }
                        niche_variants.end = v;
                    }

                    if niche_variants.start > niche_variants.end {
                        dataful_variant = None;
                    }

                    if let Some(i) = dataful_variant {
                        let count = (niche_variants.end - niche_variants.start + 1) as u128;
                        for (field_index, field) in variants[i].iter().enumerate() {
                            let (offset, niche, niche_start) =
                                match field.find_niche(cx, count)? {
                                    Some(niche) => niche,
                                    None => continue
                                };
                            let st = variants.iter().enumerate().map(|(j, v)| {
                                let mut st = univariant_uninterned(v,
                                    &def.repr, StructKind::AlwaysSized)?;
                                st.variants = Variants::Single { index: j };
                                Ok(st)
                            }).collect::<Result<Vec<_>, _>>()?;

                            let offset = st[i].fields.offset(field_index) + offset;
                            let LayoutDetails { size, mut align, .. } = st[i];

                            let mut niche_align = niche.value.align(dl);
                            let abi = if offset.bytes() == 0 && niche.value.size(dl) == size {
                                Abi::Scalar(niche.clone())
                            } else {
                                let mut packed = st[i].abi.is_packed();
                                if offset.abi_align(niche_align) != offset {
                                    packed = true;
                                    niche_align = dl.i8_align;
                                }
                                Abi::Aggregate {
                                    sized: true,
                                    packed
                                }
                            };
                            align = align.max(niche_align);

                            return Ok(tcx.intern_layout(LayoutDetails {
                                variants: Variants::NicheFilling {
                                    dataful_variant: i,
                                    niche_variants,
                                    niche,
                                    niche_start,
                                    variants: st,
                                },
                                fields: FieldPlacement::Arbitrary {
                                    offsets: vec![offset],
                                    memory_index: vec![0]
                                },
                                abi,
                                size,
                                align,
                            }));
                        }
                    }
                }

                let (mut min, mut max) = (i128::max_value(), i128::min_value());
                for (i, discr) in def.discriminants(tcx).enumerate() {
                    if variants[i].iter().any(|f| f.abi == Abi::Uninhabited) {
                        continue;
                    }
                    let x = discr.to_u128_unchecked() as i128;
                    if x < min { min = x; }
                    if x > max { max = x; }
                }
                assert!(min <= max, "discriminant range is {}...{}", min, max);
                let (min_ity, signed) = Integer::repr_discr(tcx, ty, &def.repr, min, max);

                let mut align = dl.aggregate_align;
                let mut size = Size::from_bytes(0);

                // We're interested in the smallest alignment, so start large.
                let mut start_align = Align::from_bytes(256, 256).unwrap();
                assert_eq!(Integer::for_abi_align(dl, start_align), None);

                // repr(C) on an enum tells us to make a (tag, union) layout,
                // so we need to grow the prefix alignment to be at least
                // the alignment of the union. (This value is used both for
                // determining the alignment of the overall enum, and the
                // determining the alignment of the payload after the tag.)
                let mut prefix_align = min_ity.align(dl);
                if def.repr.c() {
                    for fields in &variants {
                        for field in fields {
                            prefix_align = prefix_align.max(field.align);
                        }
                    }
                }

                // Create the set of structs that represent each variant.
                let mut variants = variants.into_iter().enumerate().map(|(i, field_layouts)| {
                    let mut st = univariant_uninterned(&field_layouts,
                        &def.repr, StructKind::Prefixed(min_ity.size(), prefix_align))?;
                    st.variants = Variants::Single { index: i };
                    // Find the first field we can't move later
                    // to make room for a larger discriminant.
                    for field in st.fields.index_by_increasing_offset().map(|j| field_layouts[j]) {
                        if !field.is_zst() || field.align.abi() != 1 {
                            start_align = start_align.min(field.align);
                            break;
                        }
                    }
                    size = cmp::max(size, st.size);
                    align = align.max(st.align);
                    Ok(st)
                }).collect::<Result<Vec<_>, _>>()?;

                // Align the maximum variant size to the largest alignment.
                size = size.abi_align(align);

                if size.bytes() >= dl.obj_size_bound() {
                    return Err(LayoutError::SizeOverflow(ty));
                }

                let typeck_ity = Integer::from_attr(dl, def.repr.discr_type());
                if typeck_ity < min_ity {
                    // It is a bug if Layout decided on a greater discriminant size than typeck for
                    // some reason at this point (based on values discriminant can take on). Mostly
                    // because this discriminant will be loaded, and then stored into variable of
                    // type calculated by typeck. Consider such case (a bug): typeck decided on
                    // byte-sized discriminant, but layout thinks we need a 16-bit to store all
                    // discriminant values. That would be a bug, because then, in trans, in order
                    // to store this 16-bit discriminant into 8-bit sized temporary some of the
                    // space necessary to represent would have to be discarded (or layout is wrong
                    // on thinking it needs 16 bits)
                    bug!("layout decided on a larger discriminant type ({:?}) than typeck ({:?})",
                         min_ity, typeck_ity);
                    // However, it is fine to make discr type however large (as an optimisation)
                    // after this point – we’ll just truncate the value we load in trans.
                }

                // Check to see if we should use a different type for the
                // discriminant. We can safely use a type with the same size
                // as the alignment of the first field of each variant.
                // We increase the size of the discriminant to avoid LLVM copying
                // padding when it doesn't need to. This normally causes unaligned
                // load/stores and excessive memcpy/memset operations. By using a
                // bigger integer size, LLVM can be sure about it's contents and
                // won't be so conservative.

                // Use the initial field alignment
                let mut ity = Integer::for_abi_align(dl, start_align).unwrap_or(min_ity);

                // If the alignment is not larger than the chosen discriminant size,
                // don't use the alignment as the final size.
                if ity <= min_ity {
                    ity = min_ity;
                } else {
                    // Patch up the variants' first few fields.
                    let old_ity_size = min_ity.size();
                    let new_ity_size = ity.size();
                    for variant in &mut variants {
                        if variant.abi == Abi::Uninhabited {
                            continue;
                        }
                        match variant.fields {
                            FieldPlacement::Arbitrary { ref mut offsets, .. } => {
                                for i in offsets {
                                    if *i <= old_ity_size {
                                        assert_eq!(*i, old_ity_size);
                                        *i = new_ity_size;
                                    }
                                }
                                // We might be making the struct larger.
                                if variant.size <= old_ity_size {
                                    variant.size = new_ity_size;
                                }
                            }
                            _ => bug!()
                        }
                    }
                }

                let discr = Scalar {
                    value: Int(ity, signed),
                    valid_range: (min as u128)..=(max as u128)
                };
                let abi = if discr.value.size(dl) == size {
                    Abi::Scalar(discr.clone())
                } else {
                    Abi::Aggregate {
                        sized: true,
                        packed: false
                    }
                };
                tcx.intern_layout(LayoutDetails {
                    variants: Variants::Tagged {
                        discr,
                        variants
                    },
                    // FIXME(eddyb): using `FieldPlacement::Arbitrary` here results
                    // in lost optimizations, specifically around allocations, see
                    // `test/codegen/{alloc-optimisation,vec-optimizes-away}.rs`.
                    fields: FieldPlacement::Union(1),
                    abi,
                    align,
                    size
                })
            }

            // Types with no meaningful known layout.
            ty::TyProjection(_) | ty::TyAnon(..) => {
                let normalized = tcx.normalize_associated_type_in_env(&ty, param_env);
                if ty == normalized {
                    return Err(LayoutError::Unknown(ty));
                }
                tcx.layout_raw(param_env.and(normalized))?
            }
            ty::TyParam(_) => {
                return Err(LayoutError::Unknown(ty));
            }
            ty::TyInfer(_) | ty::TyError => {
                bug!("LayoutDetails::compute: unexpected type `{}`", ty)
            }
        })
    }

    /// This is invoked by the `layout_raw` query to record the final
    /// layout of each type.
    #[inline]
    fn record_layout_for_printing(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                  ty: Ty<'tcx>,
                                  param_env: ty::ParamEnv<'tcx>,
                                  layout: TyLayout<'tcx>) {
        // If we are running with `-Zprint-type-sizes`, record layouts for
        // dumping later. Ignore layouts that are done with non-empty
        // environments or non-monomorphic layouts, as the user only wants
        // to see the stuff resulting from the final trans session.
        if
            !tcx.sess.opts.debugging_opts.print_type_sizes ||
            ty.has_param_types() ||
            ty.has_self_ty() ||
            !param_env.caller_bounds.is_empty()
        {
            return;
        }

        Self::record_layout_for_printing_outlined(tcx, ty, param_env, layout)
    }

    fn record_layout_for_printing_outlined(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                           ty: Ty<'tcx>,
                                           param_env: ty::ParamEnv<'tcx>,
                                           layout: TyLayout<'tcx>) {
        let cx = (tcx, param_env);
        // (delay format until we actually need it)
        let record = |kind, opt_discr_size, variants| {
            let type_desc = format!("{:?}", ty);
            tcx.sess.code_stats.borrow_mut().record_type_size(kind,
                                                              type_desc,
                                                              layout.align,
                                                              layout.size,
                                                              opt_discr_size,
                                                              variants);
        };

        let adt_def = match ty.sty {
            ty::TyAdt(ref adt_def, _) => {
                debug!("print-type-size t: `{:?}` process adt", ty);
                adt_def
            }

            ty::TyClosure(..) => {
                debug!("print-type-size t: `{:?}` record closure", ty);
                record(DataTypeKind::Closure, None, vec![]);
                return;
            }

            _ => {
                debug!("print-type-size t: `{:?}` skip non-nominal", ty);
                return;
            }
        };

        let adt_kind = adt_def.adt_kind();

        let build_variant_info = |n: Option<ast::Name>,
                                  flds: &[ast::Name],
                                  layout: TyLayout<'tcx>| {
            let mut min_size = Size::from_bytes(0);
            let field_info: Vec<_> = flds.iter().enumerate().map(|(i, &name)| {
                match layout.field(cx, i) {
                    Err(err) => {
                        bug!("no layout found for field {}: `{:?}`", name, err);
                    }
                    Ok(field_layout) => {
                        let offset = layout.fields.offset(i);
                        let field_end = offset + field_layout.size;
                        if min_size < field_end {
                            min_size = field_end;
                        }
                        session::FieldInfo {
                            name: name.to_string(),
                            offset: offset.bytes(),
                            size: field_layout.size.bytes(),
                            align: field_layout.align.abi(),
                        }
                    }
                }
            }).collect();

            session::VariantInfo {
                name: n.map(|n|n.to_string()),
                kind: if layout.is_unsized() {
                    session::SizeKind::Min
                } else {
                    session::SizeKind::Exact
                },
                align: layout.align.abi(),
                size: if min_size.bytes() == 0 {
                    layout.size.bytes()
                } else {
                    min_size.bytes()
                },
                fields: field_info,
            }
        };

        match layout.variants {
            Variants::Single { index } => {
                debug!("print-type-size `{:#?}` variant {}",
                       layout, adt_def.variants[index].name);
                if !adt_def.variants.is_empty() {
                    let variant_def = &adt_def.variants[index];
                    let fields: Vec<_> =
                        variant_def.fields.iter().map(|f| f.name).collect();
                    record(adt_kind.into(),
                           None,
                           vec![build_variant_info(Some(variant_def.name),
                                                   &fields,
                                                   layout)]);
                } else {
                    // (This case arises for *empty* enums; so give it
                    // zero variants.)
                    record(adt_kind.into(), None, vec![]);
                }
            }

            Variants::NicheFilling { .. } |
            Variants::Tagged { .. } => {
                debug!("print-type-size `{:#?}` adt general variants def {}",
                       ty, adt_def.variants.len());
                let variant_infos: Vec<_> =
                    adt_def.variants.iter().enumerate().map(|(i, variant_def)| {
                        let fields: Vec<_> =
                            variant_def.fields.iter().map(|f| f.name).collect();
                        build_variant_info(Some(variant_def.name),
                                            &fields,
                                            layout.for_variant(cx, i))
                    })
                    .collect();
                record(adt_kind.into(), match layout.variants {
                    Variants::Tagged { ref discr, .. } => Some(discr.value.size(tcx)),
                    _ => None
                }, variant_infos);
            }
        }
    }
}

/// Type size "skeleton", i.e. the only information determining a type's size.
/// While this is conservative, (aside from constant sizes, only pointers,
/// newtypes thereof and null pointer optimized enums are allowed), it is
/// enough to statically check common usecases of transmute.
#[derive(Copy, Clone, Debug)]
pub enum SizeSkeleton<'tcx> {
    /// Any statically computable Layout.
    Known(Size),

    /// A potentially-fat pointer.
    Pointer {
        /// If true, this pointer is never null.
        non_zero: bool,
        /// The type which determines the unsized metadata, if any,
        /// of this pointer. Either a type parameter or a projection
        /// depending on one, with regions erased.
        tail: Ty<'tcx>
    }
}

impl<'a, 'tcx> SizeSkeleton<'tcx> {
    pub fn compute(ty: Ty<'tcx>,
                   tcx: TyCtxt<'a, 'tcx, 'tcx>,
                   param_env: ty::ParamEnv<'tcx>)
                   -> Result<SizeSkeleton<'tcx>, LayoutError<'tcx>> {
        assert!(!ty.has_infer_types());

        // First try computing a static layout.
        let err = match (tcx, param_env).layout_of(ty) {
            Ok(layout) => {
                return Ok(SizeSkeleton::Known(layout.size));
            }
            Err(err) => err
        };

        match ty.sty {
            ty::TyRef(_, ty::TypeAndMut { ty: pointee, .. }) |
            ty::TyRawPtr(ty::TypeAndMut { ty: pointee, .. }) => {
                let non_zero = !ty.is_unsafe_ptr();
                let tail = tcx.struct_tail(pointee);
                match tail.sty {
                    ty::TyParam(_) | ty::TyProjection(_) => {
                        assert!(tail.has_param_types() || tail.has_self_ty());
                        Ok(SizeSkeleton::Pointer {
                            non_zero,
                            tail: tcx.erase_regions(&tail)
                        })
                    }
                    _ => {
                        bug!("SizeSkeleton::compute({}): layout errored ({}), yet \
                              tail `{}` is not a type parameter or a projection",
                             ty, err, tail)
                    }
                }
            }

            ty::TyAdt(def, substs) => {
                // Only newtypes and enums w/ nullable pointer optimization.
                if def.is_union() || def.variants.is_empty() || def.variants.len() > 2 {
                    return Err(err);
                }

                // Get a zero-sized variant or a pointer newtype.
                let zero_or_ptr_variant = |i: usize| {
                    let fields = def.variants[i].fields.iter().map(|field| {
                        SizeSkeleton::compute(field.ty(tcx, substs), tcx, param_env)
                    });
                    let mut ptr = None;
                    for field in fields {
                        let field = field?;
                        match field {
                            SizeSkeleton::Known(size) => {
                                if size.bytes() > 0 {
                                    return Err(err);
                                }
                            }
                            SizeSkeleton::Pointer {..} => {
                                if ptr.is_some() {
                                    return Err(err);
                                }
                                ptr = Some(field);
                            }
                        }
                    }
                    Ok(ptr)
                };

                let v0 = zero_or_ptr_variant(0)?;
                // Newtype.
                if def.variants.len() == 1 {
                    if let Some(SizeSkeleton::Pointer { non_zero, tail }) = v0 {
                        return Ok(SizeSkeleton::Pointer {
                            non_zero: non_zero ||
                                Some(def.did) == tcx.lang_items().non_zero(),
                            tail,
                        });
                    } else {
                        return Err(err);
                    }
                }

                let v1 = zero_or_ptr_variant(1)?;
                // Nullable pointer enum optimization.
                match (v0, v1) {
                    (Some(SizeSkeleton::Pointer { non_zero: true, tail }), None) |
                    (None, Some(SizeSkeleton::Pointer { non_zero: true, tail })) => {
                        Ok(SizeSkeleton::Pointer {
                            non_zero: false,
                            tail,
                        })
                    }
                    _ => Err(err)
                }
            }

            ty::TyProjection(_) | ty::TyAnon(..) => {
                let normalized = tcx.normalize_associated_type_in_env(&ty, param_env);
                if ty == normalized {
                    Err(err)
                } else {
                    SizeSkeleton::compute(normalized, tcx, param_env)
                }
            }

            _ => Err(err)
        }
    }

    pub fn same_size(self, other: SizeSkeleton) -> bool {
        match (self, other) {
            (SizeSkeleton::Known(a), SizeSkeleton::Known(b)) => a == b,
            (SizeSkeleton::Pointer { tail: a, .. },
             SizeSkeleton::Pointer { tail: b, .. }) => a == b,
            _ => false
        }
    }
}

/// The details of the layout of a type, alongside the type itself.
/// Provides various type traversal APIs (e.g. recursing into fields).
///
/// Note that the details are NOT guaranteed to always be identical
/// to those obtained from `layout_of(ty)`, as we need to produce
/// layouts for which Rust types do not exist, such as enum variants
/// or synthetic fields of enums (i.e. discriminants) and fat pointers.
#[derive(Copy, Clone, Debug)]
pub struct TyLayout<'tcx> {
    pub ty: Ty<'tcx>,
    details: &'tcx LayoutDetails
}

#[doc(hidden)]
impl<'tcx> Deref for TyLayout<'tcx> {
    type Target = &'tcx LayoutDetails;
    fn deref(&self) -> &&'tcx LayoutDetails {
        &self.details
    }
}

pub trait HasTyCtxt<'tcx>: HasDataLayout {
    fn tcx<'a>(&'a self) -> TyCtxt<'a, 'tcx, 'tcx>;
}

impl<'a, 'gcx, 'tcx> HasDataLayout for TyCtxt<'a, 'gcx, 'tcx> {
    fn data_layout(&self) -> &TargetDataLayout {
        &self.data_layout
    }
}

impl<'a, 'gcx, 'tcx> HasTyCtxt<'gcx> for TyCtxt<'a, 'gcx, 'tcx> {
    fn tcx<'b>(&'b self) -> TyCtxt<'b, 'gcx, 'gcx> {
        self.global_tcx()
    }
}

impl<'a, 'gcx, 'tcx, T: Copy> HasDataLayout for (TyCtxt<'a, 'gcx, 'tcx>, T) {
    fn data_layout(&self) -> &TargetDataLayout {
        self.0.data_layout()
    }
}

impl<'a, 'gcx, 'tcx, T: Copy> HasTyCtxt<'gcx> for (TyCtxt<'a, 'gcx, 'tcx>, T) {
    fn tcx<'b>(&'b self) -> TyCtxt<'b, 'gcx, 'gcx> {
        self.0.tcx()
    }
}

pub trait MaybeResult<T> {
    fn from_ok(x: T) -> Self;
    fn map_same<F: FnOnce(T) -> T>(self, f: F) -> Self;
}

impl<T> MaybeResult<T> for T {
    fn from_ok(x: T) -> Self {
        x
    }
    fn map_same<F: FnOnce(T) -> T>(self, f: F) -> Self {
        f(self)
    }
}

impl<T, E> MaybeResult<T> for Result<T, E> {
    fn from_ok(x: T) -> Self {
        Ok(x)
    }
    fn map_same<F: FnOnce(T) -> T>(self, f: F) -> Self {
        self.map(f)
    }
}

pub trait LayoutOf<T> {
    type TyLayout;

    fn layout_of(self, ty: T) -> Self::TyLayout;
}

impl<'a, 'tcx> LayoutOf<Ty<'tcx>> for (TyCtxt<'a, 'tcx, 'tcx>, ty::ParamEnv<'tcx>) {
    type TyLayout = Result<TyLayout<'tcx>, LayoutError<'tcx>>;

    /// Computes the layout of a type. Note that this implicitly
    /// executes in "reveal all" mode.
    #[inline]
    fn layout_of(self, ty: Ty<'tcx>) -> Self::TyLayout {
        let (tcx, param_env) = self;

        let ty = tcx.normalize_associated_type_in_env(&ty, param_env.reveal_all());
        let details = tcx.layout_raw(param_env.reveal_all().and(ty))?;
        let layout = TyLayout {
            ty,
            details
        };

        // NB: This recording is normally disabled; when enabled, it
        // can however trigger recursive invocations of `layout_of`.
        // Therefore, we execute it *after* the main query has
        // completed, to avoid problems around recursive structures
        // and the like. (Admitedly, I wasn't able to reproduce a problem
        // here, but it seems like the right thing to do. -nmatsakis)
        LayoutDetails::record_layout_for_printing(tcx, ty, param_env, layout);

        Ok(layout)
    }
}

impl<'a, 'tcx> LayoutOf<Ty<'tcx>> for (ty::maps::TyCtxtAt<'a, 'tcx, 'tcx>,
                                       ty::ParamEnv<'tcx>) {
    type TyLayout = Result<TyLayout<'tcx>, LayoutError<'tcx>>;

    /// Computes the layout of a type. Note that this implicitly
    /// executes in "reveal all" mode.
    #[inline]
    fn layout_of(self, ty: Ty<'tcx>) -> Self::TyLayout {
        let (tcx_at, param_env) = self;

        let ty = tcx_at.tcx.normalize_associated_type_in_env(&ty, param_env.reveal_all());
        let details = tcx_at.layout_raw(param_env.reveal_all().and(ty))?;
        let layout = TyLayout {
            ty,
            details
        };

        // NB: This recording is normally disabled; when enabled, it
        // can however trigger recursive invocations of `layout_of`.
        // Therefore, we execute it *after* the main query has
        // completed, to avoid problems around recursive structures
        // and the like. (Admitedly, I wasn't able to reproduce a problem
        // here, but it seems like the right thing to do. -nmatsakis)
        LayoutDetails::record_layout_for_printing(tcx_at.tcx, ty, param_env, layout);

        Ok(layout)
    }
}

impl<'a, 'tcx> TyLayout<'tcx> {
    pub fn for_variant<C>(&self, cx: C, variant_index: usize) -> Self
        where C: LayoutOf<Ty<'tcx>> + HasTyCtxt<'tcx>,
              C::TyLayout: MaybeResult<TyLayout<'tcx>>
    {
        let details = match self.variants {
            Variants::Single { index } if index == variant_index => self.details,

            Variants::Single { index } => {
                // Deny calling for_variant more than once for non-Single enums.
                cx.layout_of(self.ty).map_same(|layout| {
                    assert_eq!(layout.variants, Variants::Single { index });
                    layout
                });

                let fields = match self.ty.sty {
                    ty::TyAdt(def, _) => def.variants[variant_index].fields.len(),
                    _ => bug!()
                };
                let mut details = LayoutDetails::uninhabited(fields);
                details.variants = Variants::Single { index: variant_index };
                cx.tcx().intern_layout(details)
            }

            Variants::NicheFilling { ref variants, .. } |
            Variants::Tagged { ref variants, .. } => {
                &variants[variant_index]
            }
        };

        assert_eq!(details.variants, Variants::Single { index: variant_index });

        TyLayout {
            ty: self.ty,
            details
        }
    }

    pub fn field<C>(&self, cx: C, i: usize) -> C::TyLayout
        where C: LayoutOf<Ty<'tcx>> + HasTyCtxt<'tcx>,
              C::TyLayout: MaybeResult<TyLayout<'tcx>>
    {
        let tcx = cx.tcx();
        cx.layout_of(match self.ty.sty {
            ty::TyBool |
            ty::TyChar |
            ty::TyInt(_) |
            ty::TyUint(_) |
            ty::TyFloat(_) |
            ty::TyFnPtr(_) |
            ty::TyNever |
            ty::TyFnDef(..) |
            ty::TyDynamic(..) |
            ty::TyForeign(..) => {
                bug!("TyLayout::field_type({:?}): not applicable", self)
            }

            // Potentially-fat pointers.
            ty::TyRef(_, ty::TypeAndMut { ty: pointee, .. }) |
            ty::TyRawPtr(ty::TypeAndMut { ty: pointee, .. }) => {
                assert!(i < 2);

                // Reuse the fat *T type as its own thin pointer data field.
                // This provides information about e.g. DST struct pointees
                // (which may have no non-DST form), and will work as long
                // as the `Abi` or `FieldPlacement` is checked by users.
                if i == 0 {
                    let nil = tcx.mk_nil();
                    let ptr_ty = if self.ty.is_unsafe_ptr() {
                        tcx.mk_mut_ptr(nil)
                    } else {
                        tcx.mk_mut_ref(tcx.types.re_static, nil)
                    };
                    return cx.layout_of(ptr_ty).map_same(|mut ptr_layout| {
                        ptr_layout.ty = self.ty;
                        ptr_layout
                    });
                }

                match tcx.struct_tail(pointee).sty {
                    ty::TySlice(_) |
                    ty::TyStr => tcx.types.usize,
                    ty::TyDynamic(..) => {
                        // FIXME(eddyb) use an usize/fn() array with
                        // the correct number of vtables slots.
                        tcx.mk_imm_ref(tcx.types.re_static, tcx.mk_nil())
                    }
                    _ => bug!("TyLayout::field_type({:?}): not applicable", self)
                }
            }

            // Arrays and slices.
            ty::TyArray(element, _) |
            ty::TySlice(element) => element,
            ty::TyStr => tcx.types.u8,

            // Tuples, generators and closures.
            ty::TyClosure(def_id, ref substs) => {
                substs.upvar_tys(def_id, tcx).nth(i).unwrap()
            }

            ty::TyGenerator(def_id, ref substs, _) => {
                substs.field_tys(def_id, tcx).nth(i).unwrap()
            }

            ty::TyTuple(tys, _) => tys[i],

            // SIMD vector types.
            ty::TyAdt(def, ..) if def.repr.simd() => {
                self.ty.simd_type(tcx)
            }

            // ADTs.
            ty::TyAdt(def, substs) => {
                match self.variants {
                    Variants::Single { index } => {
                        def.variants[index].fields[i].ty(tcx, substs)
                    }

                    // Discriminant field for enums (where applicable).
                    Variants::Tagged { ref discr, .. } |
                    Variants::NicheFilling { niche: ref discr, .. } => {
                        assert_eq!(i, 0);
                        let layout = LayoutDetails::scalar(tcx, discr.clone());
                        return MaybeResult::from_ok(TyLayout {
                            details: tcx.intern_layout(layout),
                            ty: discr.value.to_ty(tcx)
                        });
                    }
                }
            }

            ty::TyProjection(_) | ty::TyAnon(..) | ty::TyParam(_) |
            ty::TyInfer(_) | ty::TyError => {
                bug!("TyLayout::field_type: unexpected type `{}`", self.ty)
            }
        })
    }

    /// Returns true if the layout corresponds to an unsized type.
    pub fn is_unsized(&self) -> bool {
        self.abi.is_unsized()
    }

    /// Returns true if the fields of the layout are packed.
    pub fn is_packed(&self) -> bool {
        self.abi.is_packed()
    }

    /// Returns true if the type is a ZST and not unsized.
    pub fn is_zst(&self) -> bool {
        match self.abi {
            Abi::Uninhabited => true,
            Abi::Scalar(_) |
            Abi::ScalarPair(..) |
            Abi::Vector { .. } => false,
            Abi::Aggregate { sized, .. } => sized && self.size.bytes() == 0
        }
    }

    pub fn size_and_align(&self) -> (Size, Align) {
        (self.size, self.align)
    }

    /// Find the offset of a niche leaf field, starting from
    /// the given type and recursing through aggregates, which
    /// has at least `count` consecutive invalid values.
    /// The tuple is `(offset, scalar, niche_value)`.
    // FIXME(eddyb) traverse already optimized enums.
    fn find_niche<C>(&self, cx: C, count: u128)
        -> Result<Option<(Size, Scalar, u128)>, LayoutError<'tcx>>
        where C: LayoutOf<Ty<'tcx>, TyLayout = Result<Self, LayoutError<'tcx>>> +
                 HasTyCtxt<'tcx>
    {
        let scalar_component = |scalar: &Scalar, offset| {
            let Scalar { value, valid_range: ref v } = *scalar;

            let bits = value.size(cx).bits();
            assert!(bits <= 128);
            let max_value = !0u128 >> (128 - bits);

            // Find out how many values are outside the valid range.
            let niches = if v.start <= v.end {
                v.start + (max_value - v.end)
            } else {
                v.start - v.end - 1
            };

            // Give up if we can't fit `count` consecutive niches.
            if count > niches {
                return None;
            }

            let niche_start = v.end.wrapping_add(1) & max_value;
            let niche_end = v.end.wrapping_add(count) & max_value;
            Some((offset, Scalar {
                value,
                valid_range: v.start..=niche_end
            }, niche_start))
        };

        match self.abi {
            Abi::Scalar(ref scalar) => {
                return Ok(scalar_component(scalar, Size::from_bytes(0)));
            }
            Abi::ScalarPair(ref a, ref b) => {
                return Ok(scalar_component(a, Size::from_bytes(0)).or_else(|| {
                    scalar_component(b, a.value.size(cx).abi_align(b.value.align(cx)))
                }));
            }
            Abi::Vector { ref element, .. } => {
                return Ok(scalar_component(element, Size::from_bytes(0)));
            }
            _ => {}
        }

        // Perhaps one of the fields is non-zero, let's recurse and find out.
        if let FieldPlacement::Union(_) = self.fields {
            // Only Rust enums have safe-to-inspect fields
            // (a discriminant), other unions are unsafe.
            if let Variants::Single { .. } = self.variants {
                return Ok(None);
            }
        }
        if let FieldPlacement::Array { .. } = self.fields {
            if self.fields.count() > 0 {
                return self.field(cx, 0)?.find_niche(cx, count);
            }
        }
        for i in 0..self.fields.count() {
            let r = self.field(cx, i)?.find_niche(cx, count)?;
            if let Some((offset, scalar, niche_value)) = r {
                let offset = self.fields.offset(i) + offset;
                return Ok(Some((offset, scalar, niche_value)));
            }
        }
        Ok(None)
    }
}

impl<'gcx> HashStable<StableHashingContext<'gcx>> for Variants {
    fn hash_stable<W: StableHasherResult>(&self,
                                          hcx: &mut StableHashingContext<'gcx>,
                                          hasher: &mut StableHasher<W>) {
        use ty::layout::Variants::*;
        mem::discriminant(self).hash_stable(hcx, hasher);

        match *self {
            Single { index } => {
                index.hash_stable(hcx, hasher);
            }
            Tagged {
                ref discr,
                ref variants,
            } => {
                discr.hash_stable(hcx, hasher);
                variants.hash_stable(hcx, hasher);
            }
            NicheFilling {
                dataful_variant,
                niche_variants: RangeInclusive { start, end },
                ref niche,
                niche_start,
                ref variants,
            } => {
                dataful_variant.hash_stable(hcx, hasher);
                start.hash_stable(hcx, hasher);
                end.hash_stable(hcx, hasher);
                niche.hash_stable(hcx, hasher);
                niche_start.hash_stable(hcx, hasher);
                variants.hash_stable(hcx, hasher);
            }
        }
    }
}

impl<'gcx> HashStable<StableHashingContext<'gcx>> for FieldPlacement {
    fn hash_stable<W: StableHasherResult>(&self,
                                          hcx: &mut StableHashingContext<'gcx>,
                                          hasher: &mut StableHasher<W>) {
        use ty::layout::FieldPlacement::*;
        mem::discriminant(self).hash_stable(hcx, hasher);

        match *self {
            Union(count) => {
                count.hash_stable(hcx, hasher);
            }
            Array { count, stride } => {
                count.hash_stable(hcx, hasher);
                stride.hash_stable(hcx, hasher);
            }
            Arbitrary { ref offsets, ref memory_index } => {
                offsets.hash_stable(hcx, hasher);
                memory_index.hash_stable(hcx, hasher);
            }
        }
    }
}

impl<'gcx> HashStable<StableHashingContext<'gcx>> for Abi {
    fn hash_stable<W: StableHasherResult>(&self,
                                          hcx: &mut StableHashingContext<'gcx>,
                                          hasher: &mut StableHasher<W>) {
        use ty::layout::Abi::*;
        mem::discriminant(self).hash_stable(hcx, hasher);

        match *self {
            Uninhabited => {}
            Scalar(ref value) => {
                value.hash_stable(hcx, hasher);
            }
            ScalarPair(ref a, ref b) => {
                a.hash_stable(hcx, hasher);
                b.hash_stable(hcx, hasher);
            }
            Vector { ref element, count } => {
                element.hash_stable(hcx, hasher);
                count.hash_stable(hcx, hasher);
            }
            Aggregate { packed, sized } => {
                packed.hash_stable(hcx, hasher);
                sized.hash_stable(hcx, hasher);
            }
        }
    }
}

impl<'gcx> HashStable<StableHashingContext<'gcx>> for Scalar {
    fn hash_stable<W: StableHasherResult>(&self,
                                          hcx: &mut StableHashingContext<'gcx>,
                                          hasher: &mut StableHasher<W>) {
        let Scalar { value, valid_range: RangeInclusive { start, end } } = *self;
        value.hash_stable(hcx, hasher);
        start.hash_stable(hcx, hasher);
        end.hash_stable(hcx, hasher);
    }
}

impl_stable_hash_for!(struct ::ty::layout::LayoutDetails {
    variants,
    fields,
    abi,
    size,
    align
});

impl_stable_hash_for!(enum ::ty::layout::Integer {
    I8,
    I16,
    I32,
    I64,
    I128
});

impl_stable_hash_for!(enum ::ty::layout::Primitive {
    Int(integer, signed),
    F32,
    F64,
    Pointer
});

impl_stable_hash_for!(struct ::ty::layout::Align {
    abi,
    pref
});

impl_stable_hash_for!(struct ::ty::layout::Size {
    raw
});

impl<'gcx> HashStable<StableHashingContext<'gcx>> for LayoutError<'gcx>
{
    fn hash_stable<W: StableHasherResult>(&self,
                                          hcx: &mut StableHashingContext<'gcx>,
                                          hasher: &mut StableHasher<W>) {
        use ty::layout::LayoutError::*;
        mem::discriminant(self).hash_stable(hcx, hasher);

        match *self {
            Unknown(t) |
            SizeOverflow(t) => t.hash_stable(hcx, hasher)
        }
    }
}