1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
#[macro_export]
macro_rules! err {
($($tt:tt)*) => { Err($crate::mir::interpret::EvalErrorKind::$($tt)*.into()) };
}
mod error;
mod value;
pub use self::error::{EvalError, EvalResult, EvalErrorKind};
pub use self::value::{PrimVal, PrimValKind, Value, Pointer, PtrAndAlign, bytes_to_f32, bytes_to_f64};
use std::collections::BTreeMap;
use ty::layout::HasDataLayout;
use std::fmt;
use ty::layout;
use mir;
use ty;
use middle::region;
use std::iter;
#[derive(Clone, Debug, PartialEq)]
pub enum Lock {
NoLock,
WriteLock(DynamicLifetime),
ReadLock(Vec<DynamicLifetime>),
}
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub struct DynamicLifetime {
pub frame: usize,
pub region: Option<region::Scope>,
}
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum AccessKind {
Read,
Write,
}
#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
pub struct GlobalId<'tcx> {
pub instance: ty::Instance<'tcx>,
pub promoted: Option<mir::Promoted>,
}
pub trait PointerArithmetic: layout::HasDataLayout {
fn truncate_to_ptr(self, val: u128) -> (u64, bool) {
let max_ptr_plus_1 = 1u128 << self.data_layout().pointer_size.bits();
((val % max_ptr_plus_1) as u64, val >= max_ptr_plus_1)
}
fn overflowing_signed_offset(self, val: u64, i: i128) -> (u64, bool) {
if i < 0 {
let n = u64::max_value() - (i as u64) + 1;
val.overflowing_sub(n)
} else {
self.overflowing_offset(val, i as u64)
}
}
fn overflowing_offset(self, val: u64, i: u64) -> (u64, bool) {
let (res, over1) = val.overflowing_add(i);
let (res, over2) = self.truncate_to_ptr(res as u128);
(res, over1 || over2)
}
fn signed_offset<'tcx>(self, val: u64, i: i64) -> EvalResult<'tcx, u64> {
let (res, over) = self.overflowing_signed_offset(val, i as i128);
if over { err!(OverflowingMath) } else { Ok(res) }
}
fn offset<'tcx>(self, val: u64, i: u64) -> EvalResult<'tcx, u64> {
let (res, over) = self.overflowing_offset(val, i);
if over { err!(OverflowingMath) } else { Ok(res) }
}
fn wrapping_signed_offset(self, val: u64, i: i64) -> u64 {
self.overflowing_signed_offset(val, i as i128).0
}
}
impl<T: layout::HasDataLayout> PointerArithmetic for T {}
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub struct MemoryPointer {
pub alloc_id: AllocId,
pub offset: u64,
}
impl<'tcx> MemoryPointer {
pub fn new(alloc_id: AllocId, offset: u64) -> Self {
MemoryPointer { alloc_id, offset }
}
pub(crate) fn wrapping_signed_offset<C: HasDataLayout>(self, i: i64, cx: C) -> Self {
MemoryPointer::new(
self.alloc_id,
cx.data_layout().wrapping_signed_offset(self.offset, i),
)
}
pub fn overflowing_signed_offset<C: HasDataLayout>(self, i: i128, cx: C) -> (Self, bool) {
let (res, over) = cx.data_layout().overflowing_signed_offset(self.offset, i);
(MemoryPointer::new(self.alloc_id, res), over)
}
pub(crate) fn signed_offset<C: HasDataLayout>(self, i: i64, cx: C) -> EvalResult<'tcx, Self> {
Ok(MemoryPointer::new(
self.alloc_id,
cx.data_layout().signed_offset(self.offset, i)?,
))
}
pub fn overflowing_offset<C: HasDataLayout>(self, i: u64, cx: C) -> (Self, bool) {
let (res, over) = cx.data_layout().overflowing_offset(self.offset, i);
(MemoryPointer::new(self.alloc_id, res), over)
}
pub fn offset<C: HasDataLayout>(self, i: u64, cx: C) -> EvalResult<'tcx, Self> {
Ok(MemoryPointer::new(
self.alloc_id,
cx.data_layout().offset(self.offset, i)?,
))
}
}
#[derive(Copy, Clone, Eq, Hash, Ord, PartialEq, PartialOrd, Debug)]
pub struct AllocId(pub u64);
impl fmt::Display for AllocId {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", self.0)
}
}
#[derive(Debug, Eq, PartialEq, Hash)]
pub struct Allocation {
pub bytes: Vec<u8>,
pub relocations: BTreeMap<u64, AllocId>,
pub undef_mask: UndefMask,
pub align: u64,
}
impl Allocation {
pub fn from_bytes(slice: &[u8]) -> Self {
let mut undef_mask = UndefMask::new(0);
undef_mask.grow(slice.len() as u64, true);
Self {
bytes: slice.to_owned(),
relocations: BTreeMap::new(),
undef_mask,
align: 1,
}
}
}
type Block = u64;
const BLOCK_SIZE: u64 = 64;
#[derive(Clone, Debug, Eq, PartialEq, Hash)]
pub struct UndefMask {
blocks: Vec<Block>,
len: u64,
}
impl UndefMask {
pub fn new(size: u64) -> Self {
let mut m = UndefMask {
blocks: vec![],
len: 0,
};
m.grow(size, false);
m
}
pub fn is_range_defined(&self, start: u64, end: u64) -> bool {
if end > self.len {
return false;
}
for i in start..end {
if !self.get(i) {
return false;
}
}
true
}
pub fn set_range(&mut self, start: u64, end: u64, new_state: bool) {
let len = self.len;
if end > len {
self.grow(end - len, new_state);
}
self.set_range_inbounds(start, end, new_state);
}
pub fn set_range_inbounds(&mut self, start: u64, end: u64, new_state: bool) {
for i in start..end {
self.set(i, new_state);
}
}
pub fn get(&self, i: u64) -> bool {
let (block, bit) = bit_index(i);
(self.blocks[block] & 1 << bit) != 0
}
pub fn set(&mut self, i: u64, new_state: bool) {
let (block, bit) = bit_index(i);
if new_state {
self.blocks[block] |= 1 << bit;
} else {
self.blocks[block] &= !(1 << bit);
}
}
pub fn grow(&mut self, amount: u64, new_state: bool) {
let unused_trailing_bits = self.blocks.len() as u64 * BLOCK_SIZE - self.len;
if amount > unused_trailing_bits {
let additional_blocks = amount / BLOCK_SIZE + 1;
assert_eq!(additional_blocks as usize as u64, additional_blocks);
self.blocks.extend(
iter::repeat(0).take(additional_blocks as usize),
);
}
let start = self.len;
self.len += amount;
self.set_range_inbounds(start, start + amount, new_state);
}
}
fn bit_index(bits: u64) -> (usize, usize) {
let a = bits / BLOCK_SIZE;
let b = bits % BLOCK_SIZE;
assert_eq!(a as usize as u64, a);
assert_eq!(b as usize as u64, b);
(a as usize, b as usize)
}