1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! This file builds up the `ScopeTree`, which describes
//! the parent links in the region hierarchy.
//!
//! Most of the documentation on regions can be found in
//! `middle/infer/region_constraints/README.md`

use ich::{StableHashingContext, NodeIdHashingMode};
use util::nodemap::{FxHashMap, FxHashSet};
use ty;

use std::fmt;
use std::mem;
use std::rc::Rc;
use syntax::codemap;
use syntax::ast;
use syntax_pos::{Span, DUMMY_SP};
use ty::TyCtxt;
use ty::maps::Providers;

use hir;
use hir::def_id::DefId;
use hir::intravisit::{self, Visitor, NestedVisitorMap};
use hir::{Block, Arm, Pat, PatKind, Stmt, Expr, Local};
use rustc_data_structures::indexed_vec::Idx;
use rustc_data_structures::stable_hasher::{HashStable, StableHasher,
                                           StableHasherResult};

/// Scope represents a statically-describable scope that can be
/// used to bound the lifetime/region for values.
///
/// `Node(node_id)`: Any AST node that has any scope at all has the
/// `Node(node_id)` scope. Other variants represent special cases not
/// immediately derivable from the abstract syntax tree structure.
///
/// `DestructionScope(node_id)` represents the scope of destructors
/// implicitly-attached to `node_id` that run immediately after the
/// expression for `node_id` itself. Not every AST node carries a
/// `DestructionScope`, but those that are `terminating_scopes` do;
/// see discussion with `ScopeTree`.
///
/// `Remainder(BlockRemainder { block, statement_index })` represents
/// the scope of user code running immediately after the initializer
/// expression for the indexed statement, until the end of the block.
///
/// So: the following code can be broken down into the scopes beneath:
/// ```
/// let a = f().g( 'b: { let x = d(); let y = d(); x.h(y)  }   ) ;
/// ```
///
///                                                              +-+ (D12.)
///                                                        +-+       (D11.)
///                                              +---------+         (R10.)
///                                              +-+                  (D9.)
///                                   +----------+                    (M8.)
///                                 +----------------------+          (R7.)
///                                 +-+                               (D6.)
///                      +----------+                                 (M5.)
///                    +-----------------------------------+          (M4.)
///         +--------------------------------------------------+      (M3.)
///         +--+                                                      (M2.)
/// +-----------------------------------------------------------+     (M1.)
///
///  (M1.): Node scope of the whole `let a = ...;` statement.
///  (M2.): Node scope of the `f()` expression.
///  (M3.): Node scope of the `f().g(..)` expression.
///  (M4.): Node scope of the block labeled `'b:`.
///  (M5.): Node scope of the `let x = d();` statement
///  (D6.): DestructionScope for temporaries created during M5.
///  (R7.): Remainder scope for block `'b:`, stmt 0 (let x = ...).
///  (M8.): Node scope of the `let y = d();` statement.
///  (D9.): DestructionScope for temporaries created during M8.
/// (R10.): Remainder scope for block `'b:`, stmt 1 (let y = ...).
/// (D11.): DestructionScope for temporaries and bindings from block `'b:`.
/// (D12.): DestructionScope for temporaries created during M1 (e.g. f()).
///
/// Note that while the above picture shows the destruction scopes
/// as following their corresponding node scopes, in the internal
/// data structures of the compiler the destruction scopes are
/// represented as enclosing parents. This is sound because we use the
/// enclosing parent relationship just to ensure that referenced
/// values live long enough; phrased another way, the starting point
/// of each range is not really the important thing in the above
/// picture, but rather the ending point.
///
/// FIXME (pnkfelix): This currently derives `PartialOrd` and `Ord` to
/// placate the same deriving in `ty::FreeRegion`, but we may want to
/// actually attach a more meaningful ordering to scopes than the one
/// generated via deriving here.
///
/// Scope is a bit-packed to save space - if `code` is SCOPE_DATA_REMAINDER_MAX
/// or less, it is a `ScopeData::Remainder`, otherwise it is a type specified
/// by the bitpacking.
#[derive(Clone, PartialEq, PartialOrd, Eq, Ord, Hash, Copy, RustcEncodable, RustcDecodable)]
pub struct Scope {
    pub(crate) id: hir::ItemLocalId,
    pub(crate) code: u32
}

const SCOPE_DATA_NODE: u32 = !0;
const SCOPE_DATA_CALLSITE: u32 = !1;
const SCOPE_DATA_ARGUMENTS: u32 = !2;
const SCOPE_DATA_DESTRUCTION: u32 = !3;
const SCOPE_DATA_REMAINDER_MAX: u32 = !4;

#[derive(Clone, PartialEq, PartialOrd, Eq, Ord, Hash, Debug, Copy, RustcEncodable, RustcDecodable)]
pub enum ScopeData {
    Node(hir::ItemLocalId),

    // Scope of the call-site for a function or closure
    // (outlives the arguments as well as the body).
    CallSite(hir::ItemLocalId),

    // Scope of arguments passed to a function or closure
    // (they outlive its body).
    Arguments(hir::ItemLocalId),

    // Scope of destructors for temporaries of node-id.
    Destruction(hir::ItemLocalId),

    // Scope following a `let id = expr;` binding in a block.
    Remainder(BlockRemainder)
}

/// Represents a subscope of `block` for a binding that is introduced
/// by `block.stmts[first_statement_index]`. Such subscopes represent
/// a suffix of the block. Note that each subscope does not include
/// the initializer expression, if any, for the statement indexed by
/// `first_statement_index`.
///
/// For example, given `{ let (a, b) = EXPR_1; let c = EXPR_2; ... }`:
///
/// * the subscope with `first_statement_index == 0` is scope of both
///   `a` and `b`; it does not include EXPR_1, but does include
///   everything after that first `let`. (If you want a scope that
///   includes EXPR_1 as well, then do not use `Scope::Remainder`,
///   but instead another `Scope` that encompasses the whole block,
///   e.g. `Scope::Node`.
///
/// * the subscope with `first_statement_index == 1` is scope of `c`,
///   and thus does not include EXPR_2, but covers the `...`.
#[derive(Clone, PartialEq, PartialOrd, Eq, Ord, Hash, RustcEncodable,
         RustcDecodable, Debug, Copy)]
pub struct BlockRemainder {
    pub block: hir::ItemLocalId,
    pub first_statement_index: FirstStatementIndex,
}

newtype_index!(FirstStatementIndex
    {
        pub idx
        MAX = SCOPE_DATA_REMAINDER_MAX
    });

impl From<ScopeData> for Scope {
    #[inline]
    fn from(scope_data: ScopeData) -> Self {
        let (id, code) = match scope_data {
            ScopeData::Node(id) => (id, SCOPE_DATA_NODE),
            ScopeData::CallSite(id) => (id, SCOPE_DATA_CALLSITE),
            ScopeData::Arguments(id) => (id, SCOPE_DATA_ARGUMENTS),
            ScopeData::Destruction(id) => (id, SCOPE_DATA_DESTRUCTION),
            ScopeData::Remainder(r) => (r.block, r.first_statement_index.index() as u32)
        };
        Self { id, code }
    }
}

impl fmt::Debug for Scope {
    fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
        fmt::Debug::fmt(&self.data(), formatter)
    }
}

#[allow(non_snake_case)]
impl Scope {
    #[inline]
    pub fn data(self) -> ScopeData {
        match self.code {
            SCOPE_DATA_NODE => ScopeData::Node(self.id),
            SCOPE_DATA_CALLSITE => ScopeData::CallSite(self.id),
            SCOPE_DATA_ARGUMENTS => ScopeData::Arguments(self.id),
            SCOPE_DATA_DESTRUCTION => ScopeData::Destruction(self.id),
            idx => ScopeData::Remainder(BlockRemainder {
                block: self.id,
                first_statement_index: FirstStatementIndex::new(idx as usize)
            })
        }
    }

    #[inline]
    pub fn Node(id: hir::ItemLocalId) -> Self {
        Self::from(ScopeData::Node(id))
    }

    #[inline]
    pub fn CallSite(id: hir::ItemLocalId) -> Self {
        Self::from(ScopeData::CallSite(id))
    }

    #[inline]
    pub fn Arguments(id: hir::ItemLocalId) -> Self {
        Self::from(ScopeData::Arguments(id))
    }

    #[inline]
    pub fn Destruction(id: hir::ItemLocalId) -> Self {
        Self::from(ScopeData::Destruction(id))
    }

    #[inline]
    pub fn Remainder(r: BlockRemainder) -> Self {
        Self::from(ScopeData::Remainder(r))
    }
}

impl Scope {
    /// Returns a item-local id associated with this scope.
    ///
    /// NB: likely to be replaced as API is refined; e.g. pnkfelix
    /// anticipates `fn entry_node_id` and `fn each_exit_node_id`.
    pub fn item_local_id(&self) -> hir::ItemLocalId {
        self.id
    }

    pub fn node_id(&self, tcx: TyCtxt, scope_tree: &ScopeTree) -> ast::NodeId {
        match scope_tree.root_body {
            Some(hir_id) => {
                tcx.hir.hir_to_node_id(hir::HirId {
                    owner: hir_id.owner,
                    local_id: self.item_local_id()
                })
            }
            None => ast::DUMMY_NODE_ID
        }
    }

    /// Returns the span of this Scope.  Note that in general the
    /// returned span may not correspond to the span of any node id in
    /// the AST.
    pub fn span(&self, tcx: TyCtxt, scope_tree: &ScopeTree) -> Span {
        let node_id = self.node_id(tcx, scope_tree);
        if node_id == ast::DUMMY_NODE_ID {
            return DUMMY_SP;
        }
        let span = tcx.hir.span(node_id);
        if let ScopeData::Remainder(r) = self.data() {
            if let hir::map::NodeBlock(ref blk) = tcx.hir.get(node_id) {
                // Want span for scope starting after the
                // indexed statement and ending at end of
                // `blk`; reuse span of `blk` and shift `lo`
                // forward to end of indexed statement.
                //
                // (This is the special case aluded to in the
                // doc-comment for this method)

                let stmt_span = blk.stmts[r.first_statement_index.index()].span;

                // To avoid issues with macro-generated spans, the span
                // of the statement must be nested in that of the block.
                if span.lo() <= stmt_span.lo() && stmt_span.lo() <= span.hi() {
                    return Span::new(stmt_span.lo(), span.hi(), span.ctxt());
                }
            }
         }
         span
    }
}

/// The region scope tree encodes information about region relationships.
#[derive(Default, Debug)]
pub struct ScopeTree {
    /// If not empty, this body is the root of this region hierarchy.
    root_body: Option<hir::HirId>,

    /// The parent of the root body owner, if the latter is an
    /// an associated const or method, as impls/traits can also
    /// have lifetime parameters free in this body.
    root_parent: Option<ast::NodeId>,

    /// `parent_map` maps from a scope id to the enclosing scope id;
    /// this is usually corresponding to the lexical nesting, though
    /// in the case of closures the parent scope is the innermost
    /// conditional expression or repeating block. (Note that the
    /// enclosing scope id for the block associated with a closure is
    /// the closure itself.)
    parent_map: FxHashMap<Scope, Scope>,

    /// `var_map` maps from a variable or binding id to the block in
    /// which that variable is declared.
    var_map: FxHashMap<hir::ItemLocalId, Scope>,

    /// maps from a node-id to the associated destruction scope (if any)
    destruction_scopes: FxHashMap<hir::ItemLocalId, Scope>,

    /// `rvalue_scopes` includes entries for those expressions whose cleanup scope is
    /// larger than the default. The map goes from the expression id
    /// to the cleanup scope id. For rvalues not present in this
    /// table, the appropriate cleanup scope is the innermost
    /// enclosing statement, conditional expression, or repeating
    /// block (see `terminating_scopes`).
    /// In constants, None is used to indicate that certain expressions
    /// escape into 'static and should have no local cleanup scope.
    rvalue_scopes: FxHashMap<hir::ItemLocalId, Option<Scope>>,

    /// Encodes the hierarchy of fn bodies. Every fn body (including
    /// closures) forms its own distinct region hierarchy, rooted in
    /// the block that is the fn body. This map points from the id of
    /// that root block to the id of the root block for the enclosing
    /// fn, if any. Thus the map structures the fn bodies into a
    /// hierarchy based on their lexical mapping. This is used to
    /// handle the relationships between regions in a fn and in a
    /// closure defined by that fn. See the "Modeling closures"
    /// section of the README in infer::region_constraints for
    /// more details.
    closure_tree: FxHashMap<hir::ItemLocalId, hir::ItemLocalId>,

    /// If there are any `yield` nested within a scope, this map
    /// stores the `Span` of the last one and its index in the
    /// postorder of the Visitor traversal on the HIR.
    ///
    /// HIR Visitor postorder indexes might seem like a peculiar
    /// thing to care about. but it turns out that HIR bindings
    /// and the temporary results of HIR expressions are never
    /// storage-live at the end of HIR nodes with postorder indexes
    /// lower than theirs, and therefore don't need to be suspended
    /// at yield-points at these indexes.
    ///
    /// For an example, suppose we have some code such as:
    /// ```rust,ignore (example)
    ///     foo(f(), yield y, bar(g()))
    /// ```
    ///
    /// With the HIR tree (calls numbered for expository purposes)
    /// ```
    ///     Call#0(foo, [Call#1(f), Yield(y), Call#2(bar, Call#3(g))])
    /// ```
    ///
    /// Obviously, the result of `f()` was created before the yield
    /// (and therefore needs to be kept valid over the yield) while
    /// the result of `g()` occurs after the yield (and therefore
    /// doesn't). If we want to infer that, we can look at the
    /// postorder traversal:
    /// ```
    /// `foo` `f` Call#1 `y` Yield `bar` `g` Call#3 Call#2 Call#0
    /// ```
    ///
    /// In which we can easily see that `Call#1` occurs before the yield,
    /// and `Call#3` after it.
    ///
    /// To see that this method works, consider:
    ///
    /// Let `D` be our binding/temporary and `U` be our other HIR node, with
    /// `HIR-postorder(U) < HIR-postorder(D)` (in our example, U would be
    /// the yield and D would be one of the calls). Let's show that
    /// `D` is storage-dead at `U`.
    ///
    /// Remember that storage-live/storage-dead refers to the state of
    /// the *storage*, and does not consider moves/drop flags.
    ///
    /// Then:
    ///     1. From the ordering guarantee of HIR visitors (see
    ///     `rustc::hir::intravisit`), `D` does not dominate `U`.
    ///     2. Therefore, `D` is *potentially* storage-dead at `U` (because
    ///     we might visit `U` without ever getting to `D`).
    ///     3. However, we guarantee that at each HIR point, each
    ///     binding/temporary is always either always storage-live
    ///     or always storage-dead. This is what is being guaranteed
    ///     by `terminating_scopes` including all blocks where the
    ///     count of executions is not guaranteed.
    ///     4. By `2.` and `3.`, `D` is *statically* storage-dead at `U`,
    ///     QED.
    ///
    /// I don't think this property relies on `3.` in an essential way - it
    /// is probably still correct even if we have "unrestricted" terminating
    /// scopes. However, why use the complicated proof when a simple one
    /// works?
    ///
    /// A subtle thing: `box` expressions, such as `box (&x, yield 2, &y)`. It
    /// might seem that a `box` expression creates a `Box<T>` temporary
    /// when it *starts* executing, at `HIR-preorder(BOX-EXPR)`. That might
    /// be true in the MIR desugaring, but it is not important in the semantics.
    ///
    /// The reason is that semantically, until the `box` expression returns,
    /// the values are still owned by their containing expressions. So
    /// we'll see that `&x`.
    yield_in_scope: FxHashMap<Scope, (Span, usize)>,

    /// The number of visit_expr and visit_pat calls done in the body.
    /// Used to sanity check visit_expr/visit_pat call count when
    /// calculating generator interiors.
    body_expr_count: FxHashMap<hir::BodyId, usize>,
}

#[derive(Debug, Copy, Clone)]
pub struct Context {
    /// the root of the current region tree. This is typically the id
    /// of the innermost fn body. Each fn forms its own disjoint tree
    /// in the region hierarchy. These fn bodies are themselves
    /// arranged into a tree. See the "Modeling closures" section of
    /// the README in infer::region_constraints for more
    /// details.
    root_id: Option<hir::ItemLocalId>,

    /// the scope that contains any new variables declared
    var_parent: Option<Scope>,

    /// region parent of expressions etc
    parent: Option<Scope>,
}

struct RegionResolutionVisitor<'a, 'tcx: 'a> {
    tcx: TyCtxt<'a, 'tcx, 'tcx>,

    // The number of expressions and patterns visited in the current body
    expr_and_pat_count: usize,

    // Generated scope tree:
    scope_tree: ScopeTree,

    cx: Context,

    /// `terminating_scopes` is a set containing the ids of each
    /// statement, or conditional/repeating expression. These scopes
    /// are calling "terminating scopes" because, when attempting to
    /// find the scope of a temporary, by default we search up the
    /// enclosing scopes until we encounter the terminating scope. A
    /// conditional/repeating expression is one which is not
    /// guaranteed to execute exactly once upon entering the parent
    /// scope. This could be because the expression only executes
    /// conditionally, such as the expression `b` in `a && b`, or
    /// because the expression may execute many times, such as a loop
    /// body. The reason that we distinguish such expressions is that,
    /// upon exiting the parent scope, we cannot statically know how
    /// many times the expression executed, and thus if the expression
    /// creates temporaries we cannot know statically how many such
    /// temporaries we would have to cleanup. Therefore we ensure that
    /// the temporaries never outlast the conditional/repeating
    /// expression, preventing the need for dynamic checks and/or
    /// arbitrary amounts of stack space. Terminating scopes end
    /// up being contained in a DestructionScope that contains the
    /// destructor's execution.
    terminating_scopes: FxHashSet<hir::ItemLocalId>,
}


impl<'tcx> ScopeTree {
    pub fn record_scope_parent(&mut self, child: Scope, parent: Option<Scope>) {
        debug!("{:?}.parent = {:?}", child, parent);

        if let Some(p) = parent {
            let prev = self.parent_map.insert(child, p);
            assert!(prev.is_none());
        }

        // record the destruction scopes for later so we can query them
        if let ScopeData::Destruction(n) = child.data() {
            self.destruction_scopes.insert(n, child);
        }
    }

    pub fn each_encl_scope<E>(&self, mut e:E) where E: FnMut(Scope, Scope) {
        for (&child, &parent) in &self.parent_map {
            e(child, parent)
        }
    }

    pub fn each_var_scope<E>(&self, mut e:E) where E: FnMut(&hir::ItemLocalId, Scope) {
        for (child, &parent) in self.var_map.iter() {
            e(child, parent)
        }
    }

    pub fn opt_destruction_scope(&self, n: hir::ItemLocalId) -> Option<Scope> {
        self.destruction_scopes.get(&n).cloned()
    }

    /// Records that `sub_closure` is defined within `sup_closure`. These ids
    /// should be the id of the block that is the fn body, which is
    /// also the root of the region hierarchy for that fn.
    fn record_closure_parent(&mut self,
                             sub_closure: hir::ItemLocalId,
                             sup_closure: hir::ItemLocalId) {
        debug!("record_closure_parent(sub_closure={:?}, sup_closure={:?})",
               sub_closure, sup_closure);
        assert!(sub_closure != sup_closure);
        let previous = self.closure_tree.insert(sub_closure, sup_closure);
        assert!(previous.is_none());
    }

    fn closure_is_enclosed_by(&self,
                              mut sub_closure: hir::ItemLocalId,
                              sup_closure: hir::ItemLocalId) -> bool {
        loop {
            if sub_closure == sup_closure { return true; }
            match self.closure_tree.get(&sub_closure) {
                Some(&s) => { sub_closure = s; }
                None => { return false; }
            }
        }
    }

    fn record_var_scope(&mut self, var: hir::ItemLocalId, lifetime: Scope) {
        debug!("record_var_scope(sub={:?}, sup={:?})", var, lifetime);
        assert!(var != lifetime.item_local_id());
        self.var_map.insert(var, lifetime);
    }

    fn record_rvalue_scope(&mut self, var: hir::ItemLocalId, lifetime: Option<Scope>) {
        debug!("record_rvalue_scope(sub={:?}, sup={:?})", var, lifetime);
        if let Some(lifetime) = lifetime {
            assert!(var != lifetime.item_local_id());
        }
        self.rvalue_scopes.insert(var, lifetime);
    }

    pub fn opt_encl_scope(&self, id: Scope) -> Option<Scope> {
        //! Returns the narrowest scope that encloses `id`, if any.
        self.parent_map.get(&id).cloned()
    }

    #[allow(dead_code)] // used in cfg
    pub fn encl_scope(&self, id: Scope) -> Scope {
        //! Returns the narrowest scope that encloses `id`, if any.
        self.opt_encl_scope(id).unwrap()
    }

    /// Returns the lifetime of the local variable `var_id`
    pub fn var_scope(&self, var_id: hir::ItemLocalId) -> Scope {
        match self.var_map.get(&var_id) {
            Some(&r) => r,
            None => { bug!("no enclosing scope for id {:?}", var_id); }
        }
    }

    pub fn temporary_scope(&self, expr_id: hir::ItemLocalId) -> Option<Scope> {
        //! Returns the scope when temp created by expr_id will be cleaned up

        // check for a designated rvalue scope
        if let Some(&s) = self.rvalue_scopes.get(&expr_id) {
            debug!("temporary_scope({:?}) = {:?} [custom]", expr_id, s);
            return s;
        }

        // else, locate the innermost terminating scope
        // if there's one. Static items, for instance, won't
        // have an enclosing scope, hence no scope will be
        // returned.
        let mut id = Scope::Node(expr_id);

        while let Some(&p) = self.parent_map.get(&id) {
            match p.data() {
                ScopeData::Destruction(..) => {
                    debug!("temporary_scope({:?}) = {:?} [enclosing]",
                           expr_id, id);
                    return Some(id);
                }
                _ => id = p
            }
        }

        debug!("temporary_scope({:?}) = None", expr_id);
        return None;
    }

    pub fn var_region(&self, id: hir::ItemLocalId) -> ty::RegionKind {
        //! Returns the lifetime of the variable `id`.

        let scope = ty::ReScope(self.var_scope(id));
        debug!("var_region({:?}) = {:?}", id, scope);
        scope
    }

    pub fn scopes_intersect(&self, scope1: Scope, scope2: Scope)
                            -> bool {
        self.is_subscope_of(scope1, scope2) ||
        self.is_subscope_of(scope2, scope1)
    }

    /// Returns true if `subscope` is equal to or is lexically nested inside `superscope` and false
    /// otherwise.
    pub fn is_subscope_of(&self,
                          subscope: Scope,
                          superscope: Scope)
                          -> bool {
        let mut s = subscope;
        debug!("is_subscope_of({:?}, {:?})", subscope, superscope);
        while superscope != s {
            match self.opt_encl_scope(s) {
                None => {
                    debug!("is_subscope_of({:?}, {:?}, s={:?})=false",
                           subscope, superscope, s);
                    return false;
                }
                Some(scope) => s = scope
            }
        }

        debug!("is_subscope_of({:?}, {:?})=true",
               subscope, superscope);

        return true;
    }

    /// Finds the nearest common ancestor (if any) of two scopes.  That is, finds the smallest
    /// scope which is greater than or equal to both `scope_a` and `scope_b`.
    pub fn nearest_common_ancestor(&self,
                                   scope_a: Scope,
                                   scope_b: Scope)
                                   -> Scope {
        if scope_a == scope_b { return scope_a; }

        // [1] The initial values for `a_buf` and `b_buf` are not used.
        // The `ancestors_of` function will return some prefix that
        // is re-initialized with new values (or else fallback to a
        // heap-allocated vector).
        let mut a_buf: [Scope; 32] = [scope_a /* [1] */; 32];
        let mut a_vec: Vec<Scope> = vec![];
        let mut b_buf: [Scope; 32] = [scope_b /* [1] */; 32];
        let mut b_vec: Vec<Scope> = vec![];
        let parent_map = &self.parent_map;
        let a_ancestors = ancestors_of(parent_map, scope_a, &mut a_buf, &mut a_vec);
        let b_ancestors = ancestors_of(parent_map, scope_b, &mut b_buf, &mut b_vec);
        let mut a_index = a_ancestors.len() - 1;
        let mut b_index = b_ancestors.len() - 1;

        // Here, [ab]_ancestors is a vector going from narrow to broad.
        // The end of each vector will be the item where the scope is
        // defined; if there are any common ancestors, then the tails of
        // the vector will be the same.  So basically we want to walk
        // backwards from the tail of each vector and find the first point
        // where they diverge.  If one vector is a suffix of the other,
        // then the corresponding scope is a superscope of the other.

        if a_ancestors[a_index] != b_ancestors[b_index] {
            // In this case, the two regions belong to completely
            // different functions.  Compare those fn for lexical
            // nesting. The reasoning behind this is subtle.  See the
            // "Modeling closures" section of the README in
            // infer::region_constraints for more details.
            let a_root_scope = a_ancestors[a_index];
            let b_root_scope = a_ancestors[a_index];
            return match (a_root_scope.data(), b_root_scope.data()) {
                (ScopeData::Destruction(a_root_id),
                 ScopeData::Destruction(b_root_id)) => {
                    if self.closure_is_enclosed_by(a_root_id, b_root_id) {
                        // `a` is enclosed by `b`, hence `b` is the ancestor of everything in `a`
                        scope_b
                    } else if self.closure_is_enclosed_by(b_root_id, a_root_id) {
                        // `b` is enclosed by `a`, hence `a` is the ancestor of everything in `b`
                        scope_a
                    } else {
                        // neither fn encloses the other
                        bug!()
                    }
                }
                _ => {
                    // root ids are always Node right now
                    bug!()
                }
            };
        }

        loop {
            // Loop invariant: a_ancestors[a_index] == b_ancestors[b_index]
            // for all indices between a_index and the end of the array
            if a_index == 0 { return scope_a; }
            if b_index == 0 { return scope_b; }
            a_index -= 1;
            b_index -= 1;
            if a_ancestors[a_index] != b_ancestors[b_index] {
                return a_ancestors[a_index + 1];
            }
        }

        fn ancestors_of<'a, 'tcx>(parent_map: &FxHashMap<Scope, Scope>,
                                  scope: Scope,
                                  buf: &'a mut [Scope; 32],
                                  vec: &'a mut Vec<Scope>)
                                  -> &'a [Scope] {
            // debug!("ancestors_of(scope={:?})", scope);
            let mut scope = scope;

            let mut i = 0;
            while i < 32 {
                buf[i] = scope;
                match parent_map.get(&scope) {
                    Some(&superscope) => scope = superscope,
                    _ => return &buf[..i+1]
                }
                i += 1;
            }

            *vec = Vec::with_capacity(64);
            vec.extend_from_slice(buf);
            loop {
                vec.push(scope);
                match parent_map.get(&scope) {
                    Some(&superscope) => scope = superscope,
                    _ => return &*vec
                }
            }
        }
    }

    /// Assuming that the provided region was defined within this `ScopeTree`,
    /// returns the outermost `Scope` that the region outlives.
    pub fn early_free_scope<'a, 'gcx>(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
                                       br: &ty::EarlyBoundRegion)
                                       -> Scope {
        let param_owner = tcx.parent_def_id(br.def_id).unwrap();

        let param_owner_id = tcx.hir.as_local_node_id(param_owner).unwrap();
        let scope = tcx.hir.maybe_body_owned_by(param_owner_id).map(|body_id| {
            tcx.hir.body(body_id).value.hir_id.local_id
        }).unwrap_or_else(|| {
            // The lifetime was defined on node that doesn't own a body,
            // which in practice can only mean a trait or an impl, that
            // is the parent of a method, and that is enforced below.
            assert_eq!(Some(param_owner_id), self.root_parent,
                       "free_scope: {:?} not recognized by the \
                        region scope tree for {:?} / {:?}",
                       param_owner,
                       self.root_parent.map(|id| tcx.hir.local_def_id(id)),
                       self.root_body.map(|hir_id| DefId::local(hir_id.owner)));

            // The trait/impl lifetime is in scope for the method's body.
            self.root_body.unwrap().local_id
        });

        Scope::CallSite(scope)
    }

    /// Assuming that the provided region was defined within this `ScopeTree`,
    /// returns the outermost `Scope` that the region outlives.
    pub fn free_scope<'a, 'gcx>(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, fr: &ty::FreeRegion)
                                 -> Scope {
        let param_owner = match fr.bound_region {
            ty::BoundRegion::BrNamed(def_id, _) => {
                tcx.parent_def_id(def_id).unwrap()
            }
            _ => fr.scope
        };

        // Ensure that the named late-bound lifetimes were defined
        // on the same function that they ended up being freed in.
        assert_eq!(param_owner, fr.scope);

        let param_owner_id = tcx.hir.as_local_node_id(param_owner).unwrap();
        let body_id = tcx.hir.body_owned_by(param_owner_id);
        Scope::CallSite(tcx.hir.body(body_id).value.hir_id.local_id)
    }

    /// Checks whether the given scope contains a `yield`. If so,
    /// returns `Some((span, expr_count))` with the span of a yield we found and
    /// the number of expressions appearing before the `yield` in the body.
    pub fn yield_in_scope(&self, scope: Scope) -> Option<(Span, usize)> {
        self.yield_in_scope.get(&scope).cloned()
    }

    /// Gives the number of expressions visited in a body.
    /// Used to sanity check visit_expr call count when
    /// calculating generator interiors.
    pub fn body_expr_count(&self, body_id: hir::BodyId) -> Option<usize> {
        self.body_expr_count.get(&body_id).map(|r| *r)
    }
}

/// Records the lifetime of a local variable as `cx.var_parent`
fn record_var_lifetime(visitor: &mut RegionResolutionVisitor,
                       var_id: hir::ItemLocalId,
                       _sp: Span) {
    match visitor.cx.var_parent {
        None => {
            // this can happen in extern fn declarations like
            //
            // extern fn isalnum(c: c_int) -> c_int
        }
        Some(parent_scope) =>
            visitor.scope_tree.record_var_scope(var_id, parent_scope),
    }
}

fn resolve_block<'a, 'tcx>(visitor: &mut RegionResolutionVisitor<'a, 'tcx>, blk: &'tcx hir::Block) {
    debug!("resolve_block(blk.id={:?})", blk.id);

    let prev_cx = visitor.cx;

    // We treat the tail expression in the block (if any) somewhat
    // differently from the statements. The issue has to do with
    // temporary lifetimes. Consider the following:
    //
    //    quux({
    //        let inner = ... (&bar()) ...;
    //
    //        (... (&foo()) ...) // (the tail expression)
    //    }, other_argument());
    //
    // Each of the statements within the block is a terminating
    // scope, and thus a temporary (e.g. the result of calling
    // `bar()` in the initalizer expression for `let inner = ...;`)
    // will be cleaned up immediately after its corresponding
    // statement (i.e. `let inner = ...;`) executes.
    //
    // On the other hand, temporaries associated with evaluating the
    // tail expression for the block are assigned lifetimes so that
    // they will be cleaned up as part of the terminating scope
    // *surrounding* the block expression. Here, the terminating
    // scope for the block expression is the `quux(..)` call; so
    // those temporaries will only be cleaned up *after* both
    // `other_argument()` has run and also the call to `quux(..)`
    // itself has returned.

    visitor.enter_node_scope_with_dtor(blk.hir_id.local_id);
    visitor.cx.var_parent = visitor.cx.parent;

    {
        // This block should be kept approximately in sync with
        // `intravisit::walk_block`. (We manually walk the block, rather
        // than call `walk_block`, in order to maintain precise
        // index information.)

        for (i, statement) in blk.stmts.iter().enumerate() {
            if let hir::StmtDecl(..) = statement.node {
                // Each StmtDecl introduces a subscope for bindings
                // introduced by the declaration; this subscope covers
                // a suffix of the block . Each subscope in a block
                // has the previous subscope in the block as a parent,
                // except for the first such subscope, which has the
                // block itself as a parent.
                visitor.enter_scope(
                    Scope::Remainder(BlockRemainder {
                        block: blk.hir_id.local_id,
                        first_statement_index: FirstStatementIndex::new(i)
                    })
                );
                visitor.cx.var_parent = visitor.cx.parent;
            }
            visitor.visit_stmt(statement)
        }
        walk_list!(visitor, visit_expr, &blk.expr);
    }

    visitor.cx = prev_cx;
}

fn resolve_arm<'a, 'tcx>(visitor: &mut RegionResolutionVisitor<'a, 'tcx>, arm: &'tcx hir::Arm) {
    visitor.terminating_scopes.insert(arm.body.hir_id.local_id);

    if let Some(ref expr) = arm.guard {
        visitor.terminating_scopes.insert(expr.hir_id.local_id);
    }

    intravisit::walk_arm(visitor, arm);
}

fn resolve_pat<'a, 'tcx>(visitor: &mut RegionResolutionVisitor<'a, 'tcx>, pat: &'tcx hir::Pat) {
    visitor.record_child_scope(Scope::Node(pat.hir_id.local_id));

    // If this is a binding then record the lifetime of that binding.
    if let PatKind::Binding(..) = pat.node {
        record_var_lifetime(visitor, pat.hir_id.local_id, pat.span);
    }

    intravisit::walk_pat(visitor, pat);

    visitor.expr_and_pat_count += 1;
}

fn resolve_stmt<'a, 'tcx>(visitor: &mut RegionResolutionVisitor<'a, 'tcx>, stmt: &'tcx hir::Stmt) {
    let stmt_id = visitor.tcx.hir.node_to_hir_id(stmt.node.id()).local_id;
    debug!("resolve_stmt(stmt.id={:?})", stmt_id);

    // Every statement will clean up the temporaries created during
    // execution of that statement. Therefore each statement has an
    // associated destruction scope that represents the scope of the
    // statement plus its destructors, and thus the scope for which
    // regions referenced by the destructors need to survive.
    visitor.terminating_scopes.insert(stmt_id);

    let prev_parent = visitor.cx.parent;
    visitor.enter_node_scope_with_dtor(stmt_id);

    intravisit::walk_stmt(visitor, stmt);

    visitor.cx.parent = prev_parent;
}

fn resolve_expr<'a, 'tcx>(visitor: &mut RegionResolutionVisitor<'a, 'tcx>, expr: &'tcx hir::Expr) {
    debug!("resolve_expr(expr.id={:?})", expr.id);

    let prev_cx = visitor.cx;
    visitor.enter_node_scope_with_dtor(expr.hir_id.local_id);

    {
        let terminating_scopes = &mut visitor.terminating_scopes;
        let mut terminating = |id: hir::ItemLocalId| {
            terminating_scopes.insert(id);
        };
        match expr.node {
            // Conditional or repeating scopes are always terminating
            // scopes, meaning that temporaries cannot outlive them.
            // This ensures fixed size stacks.

            hir::ExprBinary(codemap::Spanned { node: hir::BiAnd, .. }, _, ref r) |
            hir::ExprBinary(codemap::Spanned { node: hir::BiOr, .. }, _, ref r) => {
                // For shortcircuiting operators, mark the RHS as a terminating
                // scope since it only executes conditionally.
                terminating(r.hir_id.local_id);
            }

            hir::ExprIf(ref expr, ref then, Some(ref otherwise)) => {
                terminating(expr.hir_id.local_id);
                terminating(then.hir_id.local_id);
                terminating(otherwise.hir_id.local_id);
            }

            hir::ExprIf(ref expr, ref then, None) => {
                terminating(expr.hir_id.local_id);
                terminating(then.hir_id.local_id);
            }

            hir::ExprLoop(ref body, _, _) => {
                terminating(body.hir_id.local_id);
            }

            hir::ExprWhile(ref expr, ref body, _) => {
                terminating(expr.hir_id.local_id);
                terminating(body.hir_id.local_id);
            }

            hir::ExprMatch(..) => {
                visitor.cx.var_parent = visitor.cx.parent;
            }

            hir::ExprAssignOp(..) | hir::ExprIndex(..) |
            hir::ExprUnary(..) | hir::ExprCall(..) | hir::ExprMethodCall(..) => {
                // FIXME(https://github.com/rust-lang/rfcs/issues/811) Nested method calls
                //
                // The lifetimes for a call or method call look as follows:
                //
                // call.id
                // - arg0.id
                // - ...
                // - argN.id
                // - call.callee_id
                //
                // The idea is that call.callee_id represents *the time when
                // the invoked function is actually running* and call.id
                // represents *the time to prepare the arguments and make the
                // call*.  See the section "Borrows in Calls" borrowck/README.md
                // for an extended explanation of why this distinction is
                // important.
                //
                // record_superlifetime(new_cx, expr.callee_id);
            }

            _ => {}
        }
    }

    match expr.node {
        // Manually recurse over closures, because they are the only
        // case of nested bodies that share the parent environment.
        hir::ExprClosure(.., body, _, _) => {
            let body = visitor.tcx.hir.body(body);
            visitor.visit_body(body);
        }

        _ => intravisit::walk_expr(visitor, expr)
    }

    visitor.expr_and_pat_count += 1;

    if let hir::ExprYield(..) = expr.node {
        // Mark this expr's scope and all parent scopes as containing `yield`.
        let mut scope = Scope::Node(expr.hir_id.local_id);
        loop {
            visitor.scope_tree.yield_in_scope.insert(scope,
                (expr.span, visitor.expr_and_pat_count));

            // Keep traversing up while we can.
            match visitor.scope_tree.parent_map.get(&scope) {
                // Don't cross from closure bodies to their parent.
                Some(&superscope) => match superscope.data() {
                    ScopeData::CallSite(_) => break,
                    _ => scope = superscope
                },
                None => break
            }
        }
    }

    visitor.cx = prev_cx;
}

fn resolve_local<'a, 'tcx>(visitor: &mut RegionResolutionVisitor<'a, 'tcx>,
                           pat: Option<&'tcx hir::Pat>,
                           init: Option<&'tcx hir::Expr>) {
    debug!("resolve_local(pat={:?}, init={:?})", pat, init);

    let blk_scope = visitor.cx.var_parent;

    // As an exception to the normal rules governing temporary
    // lifetimes, initializers in a let have a temporary lifetime
    // of the enclosing block. This means that e.g. a program
    // like the following is legal:
    //
    //     let ref x = HashMap::new();
    //
    // Because the hash map will be freed in the enclosing block.
    //
    // We express the rules more formally based on 3 grammars (defined
    // fully in the helpers below that implement them):
    //
    // 1. `E&`, which matches expressions like `&<rvalue>` that
    //    own a pointer into the stack.
    //
    // 2. `P&`, which matches patterns like `ref x` or `(ref x, ref
    //    y)` that produce ref bindings into the value they are
    //    matched against or something (at least partially) owned by
    //    the value they are matched against. (By partially owned,
    //    I mean that creating a binding into a ref-counted or managed value
    //    would still count.)
    //
    // 3. `ET`, which matches both rvalues like `foo()` as well as lvalues
    //    based on rvalues like `foo().x[2].y`.
    //
    // A subexpression `<rvalue>` that appears in a let initializer
    // `let pat [: ty] = expr` has an extended temporary lifetime if
    // any of the following conditions are met:
    //
    // A. `pat` matches `P&` and `expr` matches `ET`
    //    (covers cases where `pat` creates ref bindings into an rvalue
    //     produced by `expr`)
    // B. `ty` is a borrowed pointer and `expr` matches `ET`
    //    (covers cases where coercion creates a borrow)
    // C. `expr` matches `E&`
    //    (covers cases `expr` borrows an rvalue that is then assigned
    //     to memory (at least partially) owned by the binding)
    //
    // Here are some examples hopefully giving an intuition where each
    // rule comes into play and why:
    //
    // Rule A. `let (ref x, ref y) = (foo().x, 44)`. The rvalue `(22, 44)`
    // would have an extended lifetime, but not `foo()`.
    //
    // Rule B. `let x = &foo().x`. The rvalue ``foo()` would have extended
    // lifetime.
    //
    // In some cases, multiple rules may apply (though not to the same
    // rvalue). For example:
    //
    //     let ref x = [&a(), &b()];
    //
    // Here, the expression `[...]` has an extended lifetime due to rule
    // A, but the inner rvalues `a()` and `b()` have an extended lifetime
    // due to rule C.

    if let Some(expr) = init {
        record_rvalue_scope_if_borrow_expr(visitor, &expr, blk_scope);

        if let Some(pat) = pat {
            if is_binding_pat(pat) {
                record_rvalue_scope(visitor, &expr, blk_scope);
            }
        }
    }

    if let Some(pat) = pat {
        visitor.visit_pat(pat);
    }
    if let Some(expr) = init {
        visitor.visit_expr(expr);
    }

    /// True if `pat` match the `P&` nonterminal:
    ///
    ///     P& = ref X
    ///        | StructName { ..., P&, ... }
    ///        | VariantName(..., P&, ...)
    ///        | [ ..., P&, ... ]
    ///        | ( ..., P&, ... )
    ///        | box P&
    fn is_binding_pat(pat: &hir::Pat) -> bool {
        // Note that the code below looks for *explicit* refs only, that is, it won't
        // know about *implicit* refs as introduced in #42640.
        //
        // This is not a problem. For example, consider
        //
        //      let (ref x, ref y) = (Foo { .. }, Bar { .. });
        //
        // Due to the explicit refs on the left hand side, the below code would signal
        // that the temporary value on the right hand side should live until the end of
        // the enclosing block (as opposed to being dropped after the let is complete).
        //
        // To create an implicit ref, however, you must have a borrowed value on the RHS
        // already, as in this example (which won't compile before #42640):
        //
        //      let Foo { x, .. } = &Foo { x: ..., ... };
        //
        // in place of
        //
        //      let Foo { ref x, .. } = Foo { ... };
        //
        // In the former case (the implicit ref version), the temporary is created by the
        // & expression, and its lifetime would be extended to the end of the block (due
        // to a different rule, not the below code).
        match pat.node {
            PatKind::Binding(hir::BindingAnnotation::Ref, ..) |
            PatKind::Binding(hir::BindingAnnotation::RefMut, ..) => true,

            PatKind::Struct(_, ref field_pats, _) => {
                field_pats.iter().any(|fp| is_binding_pat(&fp.node.pat))
            }

            PatKind::Slice(ref pats1, ref pats2, ref pats3) => {
                pats1.iter().any(|p| is_binding_pat(&p)) ||
                pats2.iter().any(|p| is_binding_pat(&p)) ||
                pats3.iter().any(|p| is_binding_pat(&p))
            }

            PatKind::TupleStruct(_, ref subpats, _) |
            PatKind::Tuple(ref subpats, _) => {
                subpats.iter().any(|p| is_binding_pat(&p))
            }

            PatKind::Box(ref subpat) => {
                is_binding_pat(&subpat)
            }

            _ => false,
        }
    }

    /// If `expr` matches the `E&` grammar, then records an extended rvalue scope as appropriate:
    ///
    ///     E& = & ET
    ///        | StructName { ..., f: E&, ... }
    ///        | [ ..., E&, ... ]
    ///        | ( ..., E&, ... )
    ///        | {...; E&}
    ///        | box E&
    ///        | E& as ...
    ///        | ( E& )
    fn record_rvalue_scope_if_borrow_expr<'a, 'tcx>(
        visitor: &mut RegionResolutionVisitor<'a, 'tcx>,
        expr: &hir::Expr,
        blk_id: Option<Scope>)
    {
        match expr.node {
            hir::ExprAddrOf(_, ref subexpr) => {
                record_rvalue_scope_if_borrow_expr(visitor, &subexpr, blk_id);
                record_rvalue_scope(visitor, &subexpr, blk_id);
            }
            hir::ExprStruct(_, ref fields, _) => {
                for field in fields {
                    record_rvalue_scope_if_borrow_expr(
                        visitor, &field.expr, blk_id);
                }
            }
            hir::ExprArray(ref subexprs) |
            hir::ExprTup(ref subexprs) => {
                for subexpr in subexprs {
                    record_rvalue_scope_if_borrow_expr(
                        visitor, &subexpr, blk_id);
                }
            }
            hir::ExprCast(ref subexpr, _) => {
                record_rvalue_scope_if_borrow_expr(visitor, &subexpr, blk_id)
            }
            hir::ExprBlock(ref block) => {
                if let Some(ref subexpr) = block.expr {
                    record_rvalue_scope_if_borrow_expr(
                        visitor, &subexpr, blk_id);
                }
            }
            _ => {}
        }
    }

    /// Applied to an expression `expr` if `expr` -- or something owned or partially owned by
    /// `expr` -- is going to be indirectly referenced by a variable in a let statement. In that
    /// case, the "temporary lifetime" or `expr` is extended to be the block enclosing the `let`
    /// statement.
    ///
    /// More formally, if `expr` matches the grammar `ET`, record the rvalue scope of the matching
    /// `<rvalue>` as `blk_id`:
    ///
    ///     ET = *ET
    ///        | ET[...]
    ///        | ET.f
    ///        | (ET)
    ///        | <rvalue>
    ///
    /// Note: ET is intended to match "rvalues or lvalues based on rvalues".
    fn record_rvalue_scope<'a, 'tcx>(visitor: &mut RegionResolutionVisitor<'a, 'tcx>,
                                     expr: &hir::Expr,
                                     blk_scope: Option<Scope>) {
        let mut expr = expr;
        loop {
            // Note: give all the expressions matching `ET` with the
            // extended temporary lifetime, not just the innermost rvalue,
            // because in trans if we must compile e.g. `*rvalue()`
            // into a temporary, we request the temporary scope of the
            // outer expression.
            visitor.scope_tree.record_rvalue_scope(expr.hir_id.local_id, blk_scope);

            match expr.node {
                hir::ExprAddrOf(_, ref subexpr) |
                hir::ExprUnary(hir::UnDeref, ref subexpr) |
                hir::ExprField(ref subexpr, _) |
                hir::ExprTupField(ref subexpr, _) |
                hir::ExprIndex(ref subexpr, _) => {
                    expr = &subexpr;
                }
                _ => {
                    return;
                }
            }
        }
    }
}

impl<'a, 'tcx> RegionResolutionVisitor<'a, 'tcx> {
    /// Records the current parent (if any) as the parent of `child_scope`.
    fn record_child_scope(&mut self, child_scope: Scope) {
        let parent = self.cx.parent;
        self.scope_tree.record_scope_parent(child_scope, parent);
    }

    /// Records the current parent (if any) as the parent of `child_scope`,
    /// and sets `child_scope` as the new current parent.
    fn enter_scope(&mut self, child_scope: Scope) {
        self.record_child_scope(child_scope);
        self.cx.parent = Some(child_scope);
    }

    fn enter_node_scope_with_dtor(&mut self, id: hir::ItemLocalId) {
        // If node was previously marked as a terminating scope during the
        // recursive visit of its parent node in the AST, then we need to
        // account for the destruction scope representing the scope of
        // the destructors that run immediately after it completes.
        if self.terminating_scopes.contains(&id) {
            self.enter_scope(Scope::Destruction(id));
        }
        self.enter_scope(Scope::Node(id));
    }
}

impl<'a, 'tcx> Visitor<'tcx> for RegionResolutionVisitor<'a, 'tcx> {
    fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
        NestedVisitorMap::None
    }

    fn visit_block(&mut self, b: &'tcx Block) {
        resolve_block(self, b);
    }

    fn visit_body(&mut self, body: &'tcx hir::Body) {
        let body_id = body.id();
        let owner_id = self.tcx.hir.body_owner(body_id);

        debug!("visit_body(id={:?}, span={:?}, body.id={:?}, cx.parent={:?})",
               owner_id,
               self.tcx.sess.codemap().span_to_string(body.value.span),
               body_id,
               self.cx.parent);

        let outer_ec = mem::replace(&mut self.expr_and_pat_count, 0);
        let outer_cx = self.cx;
        let outer_ts = mem::replace(&mut self.terminating_scopes, FxHashSet());
        self.terminating_scopes.insert(body.value.hir_id.local_id);

        if let Some(root_id) = self.cx.root_id {
            self.scope_tree.record_closure_parent(body.value.hir_id.local_id, root_id);
        }
        self.cx.root_id = Some(body.value.hir_id.local_id);

        self.enter_scope(Scope::CallSite(body.value.hir_id.local_id));
        self.enter_scope(Scope::Arguments(body.value.hir_id.local_id));

        // The arguments and `self` are parented to the fn.
        self.cx.var_parent = self.cx.parent.take();
        for argument in &body.arguments {
            self.visit_pat(&argument.pat);
        }

        // The body of the every fn is a root scope.
        self.cx.parent = self.cx.var_parent;
        if let hir::BodyOwnerKind::Fn = self.tcx.hir.body_owner_kind(owner_id) {
            self.visit_expr(&body.value);
        } else {
            // Only functions have an outer terminating (drop) scope, while
            // temporaries in constant initializers may be 'static, but only
            // according to rvalue lifetime semantics, using the same
            // syntactical rules used for let initializers.
            //
            // E.g. in `let x = &f();`, the temporary holding the result from
            // the `f()` call lives for the entirety of the surrounding block.
            //
            // Similarly, `const X: ... = &f();` would have the result of `f()`
            // live for `'static`, implying (if Drop restrictions on constants
            // ever get lifted) that the value *could* have a destructor, but
            // it'd get leaked instead of the destructor running during the
            // evaluation of `X` (if at all allowed by CTFE).
            //
            // However, `const Y: ... = g(&f());`, like `let y = g(&f());`,
            // would *not* let the `f()` temporary escape into an outer scope
            // (i.e. `'static`), which means that after `g` returns, it drops,
            // and all the associated destruction scope rules apply.
            self.cx.var_parent = None;
            resolve_local(self, None, Some(&body.value));
        }

        if body.is_generator {
            self.scope_tree.body_expr_count.insert(body_id, self.expr_and_pat_count);
        }

        // Restore context we had at the start.
        self.expr_and_pat_count = outer_ec;
        self.cx = outer_cx;
        self.terminating_scopes = outer_ts;
    }

    fn visit_arm(&mut self, a: &'tcx Arm) {
        resolve_arm(self, a);
    }
    fn visit_pat(&mut self, p: &'tcx Pat) {
        resolve_pat(self, p);
    }
    fn visit_stmt(&mut self, s: &'tcx Stmt) {
        resolve_stmt(self, s);
    }
    fn visit_expr(&mut self, ex: &'tcx Expr) {
        resolve_expr(self, ex);
    }
    fn visit_local(&mut self, l: &'tcx Local) {
        resolve_local(self, Some(&l.pat), l.init.as_ref().map(|e| &**e));
    }
}

fn region_scope_tree<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId)
    -> Rc<ScopeTree>
{
    let closure_base_def_id = tcx.closure_base_def_id(def_id);
    if closure_base_def_id != def_id {
        return tcx.region_scope_tree(closure_base_def_id);
    }

    let id = tcx.hir.as_local_node_id(def_id).unwrap();
    let scope_tree = if let Some(body_id) = tcx.hir.maybe_body_owned_by(id) {
        let mut visitor = RegionResolutionVisitor {
            tcx,
            scope_tree: ScopeTree::default(),
            expr_and_pat_count: 0,
            cx: Context {
                root_id: None,
                parent: None,
                var_parent: None,
            },
            terminating_scopes: FxHashSet(),
        };

        let body = tcx.hir.body(body_id);
        visitor.scope_tree.root_body = Some(body.value.hir_id);

        // If the item is an associated const or a method,
        // record its impl/trait parent, as it can also have
        // lifetime parameters free in this body.
        match tcx.hir.get(id) {
            hir::map::NodeImplItem(_) |
            hir::map::NodeTraitItem(_) => {
                visitor.scope_tree.root_parent = Some(tcx.hir.get_parent(id));
            }
            _ => {}
        }

        visitor.visit_body(body);

        visitor.scope_tree
    } else {
        ScopeTree::default()
    };

    Rc::new(scope_tree)
}

pub fn provide(providers: &mut Providers) {
    *providers = Providers {
        region_scope_tree,
        ..*providers
    };
}

impl<'gcx> HashStable<StableHashingContext<'gcx>> for ScopeTree {
    fn hash_stable<W: StableHasherResult>(&self,
                                          hcx: &mut StableHashingContext<'gcx>,
                                          hasher: &mut StableHasher<W>) {
        let ScopeTree {
            root_body,
            root_parent,
            ref body_expr_count,
            ref parent_map,
            ref var_map,
            ref destruction_scopes,
            ref rvalue_scopes,
            ref closure_tree,
            ref yield_in_scope,
        } = *self;

        hcx.with_node_id_hashing_mode(NodeIdHashingMode::HashDefPath, |hcx| {
            root_body.hash_stable(hcx, hasher);
            root_parent.hash_stable(hcx, hasher);
        });

        body_expr_count.hash_stable(hcx, hasher);
        parent_map.hash_stable(hcx, hasher);
        var_map.hash_stable(hcx, hasher);
        destruction_scopes.hash_stable(hcx, hasher);
        rvalue_scopes.hash_stable(hcx, hasher);
        closure_tree.hash_stable(hcx, hasher);
        yield_in_scope.hash_stable(hcx, hasher);
    }
}