1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your // option. This file may not be copied, modified, or distributed // except according to those terms. use infer::InferCtxt; use syntax::ast; use syntax::codemap::Span; use traits::FulfillmentContext; use ty::{self, Ty, TypeFoldable}; use ty::outlives::Component; use ty::wf; /// Outlives bounds are relationships between generic parameters, /// whether they both be regions (`'a: 'b`) or whether types are /// involved (`T: 'a`). These relationships can be extracted from the /// full set of predicates we understand or also from types (in which /// case they are called implied bounds). They are fed to the /// `OutlivesEnv` which in turn is supplied to the region checker and /// other parts of the inference system. #[derive(Debug)] pub enum OutlivesBound<'tcx> { RegionSubRegion(ty::Region<'tcx>, ty::Region<'tcx>), RegionSubParam(ty::Region<'tcx>, ty::ParamTy), RegionSubProjection(ty::Region<'tcx>, ty::ProjectionTy<'tcx>), } impl<'cx, 'gcx, 'tcx> InferCtxt<'cx, 'gcx, 'tcx> { /// Implied bounds are region relationships that we deduce /// automatically. The idea is that (e.g.) a caller must check that a /// function's argument types are well-formed immediately before /// calling that fn, and hence the *callee* can assume that its /// argument types are well-formed. This may imply certain relationships /// between generic parameters. For example: /// /// fn foo<'a,T>(x: &'a T) /// /// can only be called with a `'a` and `T` such that `&'a T` is WF. /// For `&'a T` to be WF, `T: 'a` must hold. So we can assume `T: 'a`. /// /// # Parameters /// /// - `param_env`, the where-clauses in scope /// - `body_id`, the body-id to use when normalizing assoc types. /// Note that this may cause outlives obligations to be injected /// into the inference context with this body-id. /// - `ty`, the type that we are supposed to assume is WF. /// - `span`, a span to use when normalizing, hopefully not important, /// might be useful if a `bug!` occurs. pub fn implied_outlives_bounds( &self, param_env: ty::ParamEnv<'tcx>, body_id: ast::NodeId, ty: Ty<'tcx>, span: Span, ) -> Vec<OutlivesBound<'tcx>> { let tcx = self.tcx; // Sometimes when we ask what it takes for T: WF, we get back that // U: WF is required; in that case, we push U onto this stack and // process it next. Currently (at least) these resulting // predicates are always guaranteed to be a subset of the original // type, so we need not fear non-termination. let mut wf_types = vec![ty]; let mut implied_bounds = vec![]; let mut fulfill_cx = FulfillmentContext::new(); while let Some(ty) = wf_types.pop() { // Compute the obligations for `ty` to be well-formed. If `ty` is // an unresolved inference variable, just substituted an empty set // -- because the return type here is going to be things we *add* // to the environment, it's always ok for this set to be smaller // than the ultimate set. (Note: normally there won't be // unresolved inference variables here anyway, but there might be // during typeck under some circumstances.) let obligations = wf::obligations(self, param_env, body_id, ty, span).unwrap_or(vec![]); // NB: All of these predicates *ought* to be easily proven // true. In fact, their correctness is (mostly) implied by // other parts of the program. However, in #42552, we had // an annoying scenario where: // // - Some `T::Foo` gets normalized, resulting in a // variable `_1` and a `T: Trait<Foo=_1>` constraint // (not sure why it couldn't immediately get // solved). This result of `_1` got cached. // - These obligations were dropped on the floor here, // rather than being registered. // - Then later we would get a request to normalize // `T::Foo` which would result in `_1` being used from // the cache, but hence without the `T: Trait<Foo=_1>` // constraint. As a result, `_1` never gets resolved, // and we get an ICE (in dropck). // // Therefore, we register any predicates involving // inference variables. We restrict ourselves to those // involving inference variables both for efficiency and // to avoids duplicate errors that otherwise show up. fulfill_cx.register_predicate_obligations( self, obligations .iter() .filter(|o| o.predicate.has_infer_types()) .cloned(), ); // From the full set of obligations, just filter down to the // region relationships. implied_bounds.extend(obligations.into_iter().flat_map(|obligation| { assert!(!obligation.has_escaping_regions()); match obligation.predicate { ty::Predicate::Trait(..) | ty::Predicate::Equate(..) | ty::Predicate::Subtype(..) | ty::Predicate::Projection(..) | ty::Predicate::ClosureKind(..) | ty::Predicate::ObjectSafe(..) | ty::Predicate::ConstEvaluatable(..) => vec![], ty::Predicate::WellFormed(subty) => { wf_types.push(subty); vec![] } ty::Predicate::RegionOutlives(ref data) => match data.no_late_bound_regions() { None => vec![], Some(ty::OutlivesPredicate(r_a, r_b)) => { vec![OutlivesBound::RegionSubRegion(r_b, r_a)] } }, ty::Predicate::TypeOutlives(ref data) => match data.no_late_bound_regions() { None => vec![], Some(ty::OutlivesPredicate(ty_a, r_b)) => { let ty_a = self.resolve_type_vars_if_possible(&ty_a); let components = tcx.outlives_components(ty_a); Self::implied_bounds_from_components(r_b, components) } }, } })); } // Ensure that those obligations that we had to solve // get solved *here*. match fulfill_cx.select_all_or_error(self) { Ok(()) => (), Err(errors) => self.report_fulfillment_errors(&errors, None), } implied_bounds } /// When we have an implied bound that `T: 'a`, we can further break /// this down to determine what relationships would have to hold for /// `T: 'a` to hold. We get to assume that the caller has validated /// those relationships. fn implied_bounds_from_components( sub_region: ty::Region<'tcx>, sup_components: Vec<Component<'tcx>>, ) -> Vec<OutlivesBound<'tcx>> { sup_components .into_iter() .flat_map(|component| { match component { Component::Region(r) => vec![OutlivesBound::RegionSubRegion(sub_region, r)], Component::Param(p) => vec![OutlivesBound::RegionSubParam(sub_region, p)], Component::Projection(p) => vec![OutlivesBound::RegionSubProjection(sub_region, p)], Component::EscapingProjection(_) => // If the projection has escaping regions, don't // try to infer any implied bounds even for its // free components. This is conservative, because // the caller will still have to prove that those // free components outlive `sub_region`. But the // idea is that the WAY that the caller proves // that may change in the future and we want to // give ourselves room to get smarter here. vec![], Component::UnresolvedInferenceVariable(..) => vec![], } }) .collect() } } pub fn explicit_outlives_bounds<'tcx>( param_env: ty::ParamEnv<'tcx>, ) -> impl Iterator<Item = OutlivesBound<'tcx>> + 'tcx { debug!("explicit_outlives_bounds()"); param_env .caller_bounds .into_iter() .filter_map(move |predicate| match predicate { ty::Predicate::Projection(..) | ty::Predicate::Trait(..) | ty::Predicate::Equate(..) | ty::Predicate::Subtype(..) | ty::Predicate::WellFormed(..) | ty::Predicate::ObjectSafe(..) | ty::Predicate::ClosureKind(..) | ty::Predicate::TypeOutlives(..) | ty::Predicate::ConstEvaluatable(..) => None, ty::Predicate::RegionOutlives(ref data) => data.no_late_bound_regions().map( |ty::OutlivesPredicate(r_a, r_b)| OutlivesBound::RegionSubRegion(r_b, r_a), ), }) }