1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! See the Book for more information.

pub use self::LateBoundRegionConversionTime::*;
pub use self::RegionVariableOrigin::*;
pub use self::SubregionOrigin::*;
pub use self::ValuePairs::*;
pub use ty::IntVarValue;
pub use self::freshen::TypeFreshener;

use hir::def_id::DefId;
use middle::free_region::RegionRelations;
use middle::region;
use middle::lang_items;
use mir::tcx::PlaceTy;
use ty::subst::{Kind, Subst, Substs};
use ty::{TyVid, IntVid, FloatVid};
use ty::{self, Ty, TyCtxt};
use ty::error::{ExpectedFound, TypeError, UnconstrainedNumeric};
use ty::fold::{TypeFoldable, TypeFolder, TypeVisitor};
use ty::relate::RelateResult;
use traits::{self, ObligationCause, PredicateObligations, Reveal};
use rustc_data_structures::unify::{self, UnificationTable};
use std::cell::{Cell, RefCell, Ref, RefMut};
use std::collections::BTreeMap;
use std::fmt;
use syntax::ast;
use errors::DiagnosticBuilder;
use syntax_pos::{self, Span, DUMMY_SP};
use util::nodemap::FxHashMap;
use arena::DroplessArena;

use self::combine::CombineFields;
use self::higher_ranked::HrMatchResult;
use self::region_constraints::{RegionConstraintCollector, RegionSnapshot};
use self::region_constraints::{GenericKind, VerifyBound, RegionConstraintData, VarOrigins};
use self::lexical_region_resolve::LexicalRegionResolutions;
use self::outlives::env::OutlivesEnvironment;
use self::type_variable::TypeVariableOrigin;
use self::unify_key::ToType;

pub mod at;
mod combine;
mod equate;
pub mod error_reporting;
mod fudge;
mod glb;
mod higher_ranked;
pub mod lattice;
mod lub;
pub mod region_constraints;
mod lexical_region_resolve;
pub mod outlives;
pub mod resolve;
mod freshen;
mod sub;
pub mod type_variable;
pub mod unify_key;

#[must_use]
pub struct InferOk<'tcx, T> {
    pub value: T,
    pub obligations: PredicateObligations<'tcx>,
}
pub type InferResult<'tcx, T> = Result<InferOk<'tcx, T>, TypeError<'tcx>>;

pub type Bound<T> = Option<T>;
pub type UnitResult<'tcx> = RelateResult<'tcx, ()>; // "unify result"
pub type FixupResult<T> = Result<T, FixupError>; // "fixup result"

pub struct InferCtxt<'a, 'gcx: 'a+'tcx, 'tcx: 'a> {
    pub tcx: TyCtxt<'a, 'gcx, 'tcx>,

    /// During type-checking/inference of a body, `in_progress_tables`
    /// contains a reference to the tables being built up, which are
    /// used for reading closure kinds/signatures as they are inferred,
    /// and for error reporting logic to read arbitrary node types.
    pub in_progress_tables: Option<&'a RefCell<ty::TypeckTables<'tcx>>>,

    // Cache for projections. This cache is snapshotted along with the
    // infcx.
    //
    // Public so that `traits::project` can use it.
    pub projection_cache: RefCell<traits::ProjectionCache<'tcx>>,

    // We instantiate UnificationTable with bounds<Ty> because the
    // types that might instantiate a general type variable have an
    // order, represented by its upper and lower bounds.
    pub type_variables: RefCell<type_variable::TypeVariableTable<'tcx>>,

    // Map from integral variable to the kind of integer it represents
    int_unification_table: RefCell<UnificationTable<ty::IntVid>>,

    // Map from floating variable to the kind of float it represents
    float_unification_table: RefCell<UnificationTable<ty::FloatVid>>,

    // Tracks the set of region variables and the constraints between
    // them.  This is initially `Some(_)` but when
    // `resolve_regions_and_report_errors` is invoked, this gets set
    // to `None` -- further attempts to perform unification etc may
    // fail if new region constraints would've been added.
    region_constraints: RefCell<Option<RegionConstraintCollector<'tcx>>>,

    // Once region inference is done, the values for each variable.
    lexical_region_resolutions: RefCell<Option<LexicalRegionResolutions<'tcx>>>,

    /// Caches the results of trait selection. This cache is used
    /// for things that have to do with the parameters in scope.
    pub selection_cache: traits::SelectionCache<'tcx>,

    /// Caches the results of trait evaluation.
    pub evaluation_cache: traits::EvaluationCache<'tcx>,

    // the set of predicates on which errors have been reported, to
    // avoid reporting the same error twice.
    pub reported_trait_errors: RefCell<FxHashMap<Span, Vec<ty::Predicate<'tcx>>>>,

    // When an error occurs, we want to avoid reporting "derived"
    // errors that are due to this original failure. Normally, we
    // handle this with the `err_count_on_creation` count, which
    // basically just tracks how many errors were reported when we
    // started type-checking a fn and checks to see if any new errors
    // have been reported since then. Not great, but it works.
    //
    // However, when errors originated in other passes -- notably
    // resolve -- this heuristic breaks down. Therefore, we have this
    // auxiliary flag that one can set whenever one creates a
    // type-error that is due to an error in a prior pass.
    //
    // Don't read this flag directly, call `is_tainted_by_errors()`
    // and `set_tainted_by_errors()`.
    tainted_by_errors_flag: Cell<bool>,

    // Track how many errors were reported when this infcx is created.
    // If the number of errors increases, that's also a sign (line
    // `tained_by_errors`) to avoid reporting certain kinds of errors.
    err_count_on_creation: usize,

    // This flag is true while there is an active snapshot.
    in_snapshot: Cell<bool>,

    // A set of constraints that regionck must validate. Each
    // constraint has the form `T:'a`, meaning "some type `T` must
    // outlive the lifetime 'a". These constraints derive from
    // instantiated type parameters. So if you had a struct defined
    // like
    //
    //     struct Foo<T:'static> { ... }
    //
    // then in some expression `let x = Foo { ... }` it will
    // instantiate the type parameter `T` with a fresh type `$0`. At
    // the same time, it will record a region obligation of
    // `$0:'static`. This will get checked later by regionck. (We
    // can't generally check these things right away because we have
    // to wait until types are resolved.)
    //
    // These are stored in a map keyed to the id of the innermost
    // enclosing fn body / static initializer expression. This is
    // because the location where the obligation was incurred can be
    // relevant with respect to which sublifetime assumptions are in
    // place. The reason that we store under the fn-id, and not
    // something more fine-grained, is so that it is easier for
    // regionck to be sure that it has found *all* the region
    // obligations (otherwise, it's easy to fail to walk to a
    // particular node-id).
    //
    // Before running `resolve_regions_and_report_errors`, the creator
    // of the inference context is expected to invoke
    // `process_region_obligations` (defined in `self::region_obligations`)
    // for each body-id in this map, which will process the
    // obligations within. This is expected to be done 'late enough'
    // that all type inference variables have been bound and so forth.
    region_obligations: RefCell<Vec<(ast::NodeId, RegionObligation<'tcx>)>>,
}

/// A map returned by `skolemize_late_bound_regions()` indicating the skolemized
/// region that each late-bound region was replaced with.
pub type SkolemizationMap<'tcx> = BTreeMap<ty::BoundRegion, ty::Region<'tcx>>;

/// See `error_reporting` module for more details
#[derive(Clone, Debug)]
pub enum ValuePairs<'tcx> {
    Types(ExpectedFound<Ty<'tcx>>),
    TraitRefs(ExpectedFound<ty::TraitRef<'tcx>>),
    PolyTraitRefs(ExpectedFound<ty::PolyTraitRef<'tcx>>),
}

/// The trace designates the path through inference that we took to
/// encounter an error or subtyping constraint.
///
/// See `error_reporting` module for more details.
#[derive(Clone)]
pub struct TypeTrace<'tcx> {
    cause: ObligationCause<'tcx>,
    values: ValuePairs<'tcx>,
}

/// The origin of a `r1 <= r2` constraint.
///
/// See `error_reporting` module for more details
#[derive(Clone, Debug)]
pub enum SubregionOrigin<'tcx> {
    // Arose from a subtyping relation
    Subtype(TypeTrace<'tcx>),

    // Stack-allocated closures cannot outlive innermost loop
    // or function so as to ensure we only require finite stack
    InfStackClosure(Span),

    // Invocation of closure must be within its lifetime
    InvokeClosure(Span),

    // Dereference of reference must be within its lifetime
    DerefPointer(Span),

    // Closure bound must not outlive captured free variables
    FreeVariable(Span, ast::NodeId),

    // Index into slice must be within its lifetime
    IndexSlice(Span),

    // When casting `&'a T` to an `&'b Trait` object,
    // relating `'a` to `'b`
    RelateObjectBound(Span),

    // Some type parameter was instantiated with the given type,
    // and that type must outlive some region.
    RelateParamBound(Span, Ty<'tcx>),

    // The given region parameter was instantiated with a region
    // that must outlive some other region.
    RelateRegionParamBound(Span),

    // A bound placed on type parameters that states that must outlive
    // the moment of their instantiation.
    RelateDefaultParamBound(Span, Ty<'tcx>),

    // Creating a pointer `b` to contents of another reference
    Reborrow(Span),

    // Creating a pointer `b` to contents of an upvar
    ReborrowUpvar(Span, ty::UpvarId),

    // Data with type `Ty<'tcx>` was borrowed
    DataBorrowed(Ty<'tcx>, Span),

    // (&'a &'b T) where a >= b
    ReferenceOutlivesReferent(Ty<'tcx>, Span),

    // Type or region parameters must be in scope.
    ParameterInScope(ParameterOrigin, Span),

    // The type T of an expression E must outlive the lifetime for E.
    ExprTypeIsNotInScope(Ty<'tcx>, Span),

    // A `ref b` whose region does not enclose the decl site
    BindingTypeIsNotValidAtDecl(Span),

    // Regions appearing in a method receiver must outlive method call
    CallRcvr(Span),

    // Regions appearing in a function argument must outlive func call
    CallArg(Span),

    // Region in return type of invoked fn must enclose call
    CallReturn(Span),

    // Operands must be in scope
    Operand(Span),

    // Region resulting from a `&` expr must enclose the `&` expr
    AddrOf(Span),

    // An auto-borrow that does not enclose the expr where it occurs
    AutoBorrow(Span),

    // Region constraint arriving from destructor safety
    SafeDestructor(Span),

    // Comparing the signature and requirements of an impl method against
    // the containing trait.
    CompareImplMethodObligation {
        span: Span,
        item_name: ast::Name,
        impl_item_def_id: DefId,
        trait_item_def_id: DefId,
    },
}

/// Places that type/region parameters can appear.
#[derive(Clone, Copy, Debug)]
pub enum ParameterOrigin {
    Path, // foo::bar
    MethodCall, // foo.bar() <-- parameters on impl providing bar()
    OverloadedOperator, // a + b when overloaded
    OverloadedDeref, // *a when overloaded
}

/// Times when we replace late-bound regions with variables:
#[derive(Clone, Copy, Debug)]
pub enum LateBoundRegionConversionTime {
    /// when a fn is called
    FnCall,

    /// when two higher-ranked types are compared
    HigherRankedType,

    /// when projecting an associated type
    AssocTypeProjection(DefId),
}

/// Reasons to create a region inference variable
///
/// See `error_reporting` module for more details
#[derive(Copy, Clone, Debug)]
pub enum RegionVariableOrigin {
    // Region variables created for ill-categorized reasons,
    // mostly indicates places in need of refactoring
    MiscVariable(Span),

    // Regions created by a `&P` or `[...]` pattern
    PatternRegion(Span),

    // Regions created by `&` operator
    AddrOfRegion(Span),

    // Regions created as part of an autoref of a method receiver
    Autoref(Span),

    // Regions created as part of an automatic coercion
    Coercion(Span),

    // Region variables created as the values for early-bound regions
    EarlyBoundRegion(Span, ast::Name),

    // Region variables created for bound regions
    // in a function or method that is called
    LateBoundRegion(Span, ty::BoundRegion, LateBoundRegionConversionTime),

    UpvarRegion(ty::UpvarId, Span),

    BoundRegionInCoherence(ast::Name),

    // This origin is used for the inference variables that we create
    // during NLL region processing.
    NLL(NLLRegionVariableOrigin),
}

#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub enum NLLRegionVariableOrigin {
    // During NLL region processing, we create variables for free
    // regions that we encounter in the function signature and
    // elsewhere. This origin indices we've got one of those.
    FreeRegion,

    Inferred(::mir::visit::TyContext),
}

#[derive(Copy, Clone, Debug)]
pub enum FixupError {
    UnresolvedIntTy(IntVid),
    UnresolvedFloatTy(FloatVid),
    UnresolvedTy(TyVid)
}

/// See the `region_obligations` field for more information.
#[derive(Clone)]
pub struct RegionObligation<'tcx> {
    pub sub_region: ty::Region<'tcx>,
    pub sup_type: Ty<'tcx>,
    pub cause: ObligationCause<'tcx>,
}

impl fmt::Display for FixupError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        use self::FixupError::*;

        match *self {
            UnresolvedIntTy(_) => {
                write!(f, "cannot determine the type of this integer; \
                           add a suffix to specify the type explicitly")
            }
            UnresolvedFloatTy(_) => {
                write!(f, "cannot determine the type of this number; \
                           add a suffix to specify the type explicitly")
            }
            UnresolvedTy(_) => write!(f, "unconstrained type")
        }
    }
}

/// Helper type of a temporary returned by tcx.infer_ctxt().
/// Necessary because we can't write the following bound:
/// F: for<'b, 'tcx> where 'gcx: 'tcx FnOnce(InferCtxt<'b, 'gcx, 'tcx>).
pub struct InferCtxtBuilder<'a, 'gcx: 'a+'tcx, 'tcx: 'a> {
    global_tcx: TyCtxt<'a, 'gcx, 'gcx>,
    arena: DroplessArena,
    fresh_tables: Option<RefCell<ty::TypeckTables<'tcx>>>,
}

impl<'a, 'gcx, 'tcx> TyCtxt<'a, 'gcx, 'gcx> {
    pub fn infer_ctxt(self) -> InferCtxtBuilder<'a, 'gcx, 'tcx> {
        InferCtxtBuilder {
            global_tcx: self,
            arena: DroplessArena::new(),
            fresh_tables: None,

        }
    }
}

impl<'a, 'gcx, 'tcx> InferCtxtBuilder<'a, 'gcx, 'tcx> {
    /// Used only by `rustc_typeck` during body type-checking/inference,
    /// will initialize `in_progress_tables` with fresh `TypeckTables`.
    pub fn with_fresh_in_progress_tables(mut self, table_owner: DefId) -> Self {
        self.fresh_tables = Some(RefCell::new(ty::TypeckTables::empty(Some(table_owner))));
        self
    }

    pub fn enter<F, R>(&'tcx mut self, f: F) -> R
        where F: for<'b> FnOnce(InferCtxt<'b, 'gcx, 'tcx>) -> R
    {
        let InferCtxtBuilder {
            global_tcx,
            ref arena,
            ref fresh_tables,
        } = *self;
        let in_progress_tables = fresh_tables.as_ref();
        global_tcx.enter_local(arena, |tcx| f(InferCtxt {
            tcx,
            in_progress_tables,
            projection_cache: RefCell::new(traits::ProjectionCache::new()),
            type_variables: RefCell::new(type_variable::TypeVariableTable::new()),
            int_unification_table: RefCell::new(UnificationTable::new()),
            float_unification_table: RefCell::new(UnificationTable::new()),
            region_constraints: RefCell::new(Some(RegionConstraintCollector::new())),
            lexical_region_resolutions: RefCell::new(None),
            selection_cache: traits::SelectionCache::new(),
            evaluation_cache: traits::EvaluationCache::new(),
            reported_trait_errors: RefCell::new(FxHashMap()),
            tainted_by_errors_flag: Cell::new(false),
            err_count_on_creation: tcx.sess.err_count(),
            in_snapshot: Cell::new(false),
            region_obligations: RefCell::new(vec![]),
        }))
    }
}

impl<T> ExpectedFound<T> {
    pub fn new(a_is_expected: bool, a: T, b: T) -> Self {
        if a_is_expected {
            ExpectedFound {expected: a, found: b}
        } else {
            ExpectedFound {expected: b, found: a}
        }
    }
}

impl<'tcx, T> InferOk<'tcx, T> {
    pub fn unit(self) -> InferOk<'tcx, ()> {
        InferOk { value: (), obligations: self.obligations }
    }
}

#[must_use = "once you start a snapshot, you should always consume it"]
pub struct CombinedSnapshot<'a, 'tcx:'a> {
    projection_cache_snapshot: traits::ProjectionCacheSnapshot,
    type_snapshot: type_variable::Snapshot,
    int_snapshot: unify::Snapshot<ty::IntVid>,
    float_snapshot: unify::Snapshot<ty::FloatVid>,
    region_constraints_snapshot: RegionSnapshot,
    region_obligations_snapshot: usize,
    was_in_snapshot: bool,
    _in_progress_tables: Option<Ref<'a, ty::TypeckTables<'tcx>>>,
}

/// Helper trait for shortening the lifetimes inside a
/// value for post-type-checking normalization.
pub trait TransNormalize<'gcx>: TypeFoldable<'gcx> {
    fn trans_normalize<'a, 'tcx>(&self,
                                 infcx: &InferCtxt<'a, 'gcx, 'tcx>,
                                 param_env: ty::ParamEnv<'tcx>)
                                 -> Self;
}

macro_rules! items { ($($item:item)+) => ($($item)+) }
macro_rules! impl_trans_normalize {
    ($lt_gcx:tt, $($ty:ty),+) => {
        items!($(impl<$lt_gcx> TransNormalize<$lt_gcx> for $ty {
            fn trans_normalize<'a, 'tcx>(&self,
                                         infcx: &InferCtxt<'a, $lt_gcx, 'tcx>,
                                         param_env: ty::ParamEnv<'tcx>)
                                         -> Self {
                infcx.normalize_projections_in(param_env, self)
            }
        })+);
    }
}

impl_trans_normalize!('gcx,
    Ty<'gcx>,
    &'gcx ty::Const<'gcx>,
    &'gcx Substs<'gcx>,
    ty::FnSig<'gcx>,
    ty::PolyFnSig<'gcx>,
    ty::ClosureSubsts<'gcx>,
    ty::PolyTraitRef<'gcx>,
    ty::ExistentialTraitRef<'gcx>
);

impl<'gcx> TransNormalize<'gcx> for PlaceTy<'gcx> {
    fn trans_normalize<'a, 'tcx>(&self,
                                 infcx: &InferCtxt<'a, 'gcx, 'tcx>,
                                 param_env: ty::ParamEnv<'tcx>)
                                 -> Self {
        match *self {
            PlaceTy::Ty { ty } => PlaceTy::Ty { ty: ty.trans_normalize(infcx, param_env) },
            PlaceTy::Downcast { adt_def, substs, variant_index } => {
                PlaceTy::Downcast {
                    adt_def,
                    substs: substs.trans_normalize(infcx, param_env),
                    variant_index,
                }
            }
        }
    }
}

// NOTE: Callable from trans only!
impl<'a, 'tcx> TyCtxt<'a, 'tcx, 'tcx> {
    /// Currently, higher-ranked type bounds inhibit normalization. Therefore,
    /// each time we erase them in translation, we need to normalize
    /// the contents.
    pub fn erase_late_bound_regions_and_normalize<T>(self, value: &ty::Binder<T>)
        -> T
        where T: TransNormalize<'tcx>
    {
        assert!(!value.needs_subst());
        let value = self.erase_late_bound_regions(value);
        self.fully_normalize_associated_types_in(&value)
    }

    /// Fully normalizes any associated types in `value`, using an
    /// empty environment and `Reveal::All` mode (therefore, suitable
    /// only for monomorphized code during trans, basically).
    pub fn fully_normalize_associated_types_in<T>(self, value: &T) -> T
        where T: TransNormalize<'tcx>
    {
        debug!("fully_normalize_associated_types_in(t={:?})", value);

        let param_env = ty::ParamEnv::empty(Reveal::All);
        let value = self.erase_regions(value);

        if !value.has_projections() {
            return value;
        }

        self.infer_ctxt().enter(|infcx| {
            value.trans_normalize(&infcx, param_env)
        })
    }

    /// Does a best-effort to normalize any associated types in
    /// `value`; this includes revealing specializable types, so this
    /// should be not be used during type-checking, but only during
    /// optimization and code generation.
    pub fn normalize_associated_type_in_env<T>(
        self, value: &T, env: ty::ParamEnv<'tcx>
    ) -> T
        where T: TransNormalize<'tcx>
    {
        debug!("normalize_associated_type_in_env(t={:?})", value);

        let value = self.erase_regions(value);

        if !value.has_projections() {
            return value;
        }

        self.infer_ctxt().enter(|infcx| {
            value.trans_normalize(&infcx, env.reveal_all())
       })
    }
}

impl<'a, 'gcx, 'tcx> InferCtxt<'a, 'gcx, 'tcx> {
    fn normalize_projections_in<T>(&self, param_env: ty::ParamEnv<'tcx>, value: &T) -> T::Lifted
        where T: TypeFoldable<'tcx> + ty::Lift<'gcx>
    {
        let mut selcx = traits::SelectionContext::new(self);
        let cause = traits::ObligationCause::dummy();
        let traits::Normalized { value: result, obligations } =
            traits::normalize(&mut selcx, param_env, cause, value);

        debug!("normalize_projections_in: result={:?} obligations={:?}",
                result, obligations);

        let mut fulfill_cx = traits::FulfillmentContext::new();

        for obligation in obligations {
            fulfill_cx.register_predicate_obligation(self, obligation);
        }

        self.drain_fulfillment_cx_or_panic(DUMMY_SP, &mut fulfill_cx, &result)
    }

    /// Finishes processes any obligations that remain in the
    /// fulfillment context, and then returns the result with all type
    /// variables removed and regions erased. Because this is intended
    /// for use after type-check has completed, if any errors occur,
    /// it will panic. It is used during normalization and other cases
    /// where processing the obligations in `fulfill_cx` may cause
    /// type inference variables that appear in `result` to be
    /// unified, and hence we need to process those obligations to get
    /// the complete picture of the type.
    pub fn drain_fulfillment_cx_or_panic<T>(&self,
                                            span: Span,
                                            fulfill_cx: &mut traits::FulfillmentContext<'tcx>,
                                            result: &T)
                                            -> T::Lifted
        where T: TypeFoldable<'tcx> + ty::Lift<'gcx>
    {
        debug!("drain_fulfillment_cx_or_panic()");

        // In principle, we only need to do this so long as `result`
        // contains unbound type parameters. It could be a slight
        // optimization to stop iterating early.
        match fulfill_cx.select_all_or_error(self) {
            Ok(()) => { }
            Err(errors) => {
                span_bug!(span, "Encountered errors `{:?}` resolving bounds after type-checking",
                          errors);
            }
        }

        let result = self.resolve_type_vars_if_possible(result);
        let result = self.tcx.erase_regions(&result);

        match self.tcx.lift_to_global(&result) {
            Some(result) => result,
            None => {
                span_bug!(span, "Uninferred types/regions in `{:?}`", result);
            }
        }
    }

    pub fn is_in_snapshot(&self) -> bool {
        self.in_snapshot.get()
    }

    pub fn freshen<T:TypeFoldable<'tcx>>(&self, t: T) -> T {
        t.fold_with(&mut self.freshener())
    }

    pub fn type_var_diverges(&'a self, ty: Ty) -> bool {
        match ty.sty {
            ty::TyInfer(ty::TyVar(vid)) => self.type_variables.borrow().var_diverges(vid),
            _ => false
        }
    }

    pub fn freshener<'b>(&'b self) -> TypeFreshener<'b, 'gcx, 'tcx> {
        freshen::TypeFreshener::new(self)
    }

    pub fn type_is_unconstrained_numeric(&'a self, ty: Ty) -> UnconstrainedNumeric {
        use ty::error::UnconstrainedNumeric::Neither;
        use ty::error::UnconstrainedNumeric::{UnconstrainedInt, UnconstrainedFloat};
        match ty.sty {
            ty::TyInfer(ty::IntVar(vid)) => {
                if self.int_unification_table.borrow_mut().has_value(vid) {
                    Neither
                } else {
                    UnconstrainedInt
                }
            },
            ty::TyInfer(ty::FloatVar(vid)) => {
                if self.float_unification_table.borrow_mut().has_value(vid) {
                    Neither
                } else {
                    UnconstrainedFloat
                }
            },
            _ => Neither,
        }
    }

    /// Returns a type variable's default fallback if any exists. A default
    /// must be attached to the variable when created, if it is created
    /// without a default, this will return None.
    ///
    /// This code does not apply to integral or floating point variables,
    /// only to use declared defaults.
    ///
    /// See `new_ty_var_with_default` to create a type variable with a default.
    /// See `type_variable::Default` for details about what a default entails.
    pub fn default(&self, ty: Ty<'tcx>) -> Option<type_variable::Default<'tcx>> {
        match ty.sty {
            ty::TyInfer(ty::TyVar(vid)) => self.type_variables.borrow().default(vid),
            _ => None
        }
    }

    pub fn unsolved_variables(&self) -> Vec<Ty<'tcx>> {
        let mut variables = Vec::new();

        let unbound_ty_vars = self.type_variables
                                  .borrow_mut()
                                  .unsolved_variables()
                                  .into_iter()
                                  .map(|t| self.tcx.mk_var(t));

        let unbound_int_vars = self.int_unification_table
                                   .borrow_mut()
                                   .unsolved_variables()
                                   .into_iter()
                                   .map(|v| self.tcx.mk_int_var(v));

        let unbound_float_vars = self.float_unification_table
                                     .borrow_mut()
                                     .unsolved_variables()
                                     .into_iter()
                                     .map(|v| self.tcx.mk_float_var(v));

        variables.extend(unbound_ty_vars);
        variables.extend(unbound_int_vars);
        variables.extend(unbound_float_vars);

        return variables;
    }

    fn combine_fields(&'a self, trace: TypeTrace<'tcx>, param_env: ty::ParamEnv<'tcx>)
                      -> CombineFields<'a, 'gcx, 'tcx> {
        CombineFields {
            infcx: self,
            trace,
            cause: None,
            param_env,
            obligations: PredicateObligations::new(),
        }
    }

    // Clear the "currently in a snapshot" flag, invoke the closure,
    // then restore the flag to its original value. This flag is a
    // debugging measure designed to detect cases where we start a
    // snapshot, create type variables, and register obligations
    // which may involve those type variables in the fulfillment cx,
    // potentially leaving "dangling type variables" behind.
    // In such cases, an assertion will fail when attempting to
    // register obligations, within a snapshot. Very useful, much
    // better than grovelling through megabytes of RUST_LOG output.
    //
    // HOWEVER, in some cases the flag is unhelpful. In particular, we
    // sometimes create a "mini-fulfilment-cx" in which we enroll
    // obligations. As long as this fulfillment cx is fully drained
    // before we return, this is not a problem, as there won't be any
    // escaping obligations in the main cx. In those cases, you can
    // use this function.
    pub fn save_and_restore_in_snapshot_flag<F, R>(&self, func: F) -> R
        where F: FnOnce(&Self) -> R
    {
        let flag = self.in_snapshot.get();
        self.in_snapshot.set(false);
        let result = func(self);
        self.in_snapshot.set(flag);
        result
    }

    fn start_snapshot<'b>(&'b self) -> CombinedSnapshot<'b, 'tcx> {
        debug!("start_snapshot()");

        let in_snapshot = self.in_snapshot.get();
        self.in_snapshot.set(true);

        CombinedSnapshot {
            projection_cache_snapshot: self.projection_cache.borrow_mut().snapshot(),
            type_snapshot: self.type_variables.borrow_mut().snapshot(),
            int_snapshot: self.int_unification_table.borrow_mut().snapshot(),
            float_snapshot: self.float_unification_table.borrow_mut().snapshot(),
            region_constraints_snapshot: self.borrow_region_constraints().start_snapshot(),
            region_obligations_snapshot: self.region_obligations.borrow().len(),
            was_in_snapshot: in_snapshot,
            // Borrow tables "in progress" (i.e. during typeck)
            // to ban writes from within a snapshot to them.
            _in_progress_tables: self.in_progress_tables.map(|tables| {
                tables.borrow()
            })
        }
    }

    fn rollback_to(&self, cause: &str, snapshot: CombinedSnapshot) {
        debug!("rollback_to(cause={})", cause);
        let CombinedSnapshot { projection_cache_snapshot,
                               type_snapshot,
                               int_snapshot,
                               float_snapshot,
                               region_constraints_snapshot,
                               region_obligations_snapshot,
                               was_in_snapshot,
                               _in_progress_tables } = snapshot;

        self.in_snapshot.set(was_in_snapshot);

        self.projection_cache
            .borrow_mut()
            .rollback_to(projection_cache_snapshot);
        self.type_variables
            .borrow_mut()
            .rollback_to(type_snapshot);
        self.int_unification_table
            .borrow_mut()
            .rollback_to(int_snapshot);
        self.float_unification_table
            .borrow_mut()
            .rollback_to(float_snapshot);
        self.region_obligations
            .borrow_mut()
            .truncate(region_obligations_snapshot);
        self.borrow_region_constraints()
            .rollback_to(region_constraints_snapshot);
    }

    fn commit_from(&self, snapshot: CombinedSnapshot) {
        debug!("commit_from()");
        let CombinedSnapshot { projection_cache_snapshot,
                               type_snapshot,
                               int_snapshot,
                               float_snapshot,
                               region_constraints_snapshot,
                               region_obligations_snapshot: _,
                               was_in_snapshot,
                               _in_progress_tables } = snapshot;

        self.in_snapshot.set(was_in_snapshot);

        self.projection_cache
            .borrow_mut()
            .commit(projection_cache_snapshot);
        self.type_variables
            .borrow_mut()
            .commit(type_snapshot);
        self.int_unification_table
            .borrow_mut()
            .commit(int_snapshot);
        self.float_unification_table
            .borrow_mut()
            .commit(float_snapshot);
        self.borrow_region_constraints()
            .commit(region_constraints_snapshot);
    }

    /// Execute `f` and commit the bindings
    pub fn commit_unconditionally<R, F>(&self, f: F) -> R where
        F: FnOnce() -> R,
    {
        debug!("commit()");
        let snapshot = self.start_snapshot();
        let r = f();
        self.commit_from(snapshot);
        r
    }

    /// Execute `f` and commit the bindings if closure `f` returns `Ok(_)`
    pub fn commit_if_ok<T, E, F>(&self, f: F) -> Result<T, E> where
        F: FnOnce(&CombinedSnapshot) -> Result<T, E>
    {
        debug!("commit_if_ok()");
        let snapshot = self.start_snapshot();
        let r = f(&snapshot);
        debug!("commit_if_ok() -- r.is_ok() = {}", r.is_ok());
        match r {
            Ok(_) => { self.commit_from(snapshot); }
            Err(_) => { self.rollback_to("commit_if_ok -- error", snapshot); }
        }
        r
    }

    // Execute `f` in a snapshot, and commit the bindings it creates
    pub fn in_snapshot<T, F>(&self, f: F) -> T where
        F: FnOnce(&CombinedSnapshot) -> T
    {
        debug!("in_snapshot()");
        let snapshot = self.start_snapshot();
        let r = f(&snapshot);
        self.commit_from(snapshot);
        r
    }

    /// Execute `f` then unroll any bindings it creates
    pub fn probe<R, F>(&self, f: F) -> R where
        F: FnOnce(&CombinedSnapshot) -> R,
    {
        debug!("probe()");
        let snapshot = self.start_snapshot();
        let r = f(&snapshot);
        self.rollback_to("probe", snapshot);
        r
    }

    pub fn add_given(&self,
                     sub: ty::Region<'tcx>,
                     sup: ty::RegionVid)
    {
        self.borrow_region_constraints().add_given(sub, sup);
    }

    pub fn can_sub<T>(&self,
                      param_env: ty::ParamEnv<'tcx>,
                      a: T,
                      b: T)
                      -> UnitResult<'tcx>
        where T: at::ToTrace<'tcx>
    {
        let origin = &ObligationCause::dummy();
        self.probe(|_| {
            self.at(origin, param_env).sub(a, b).map(|InferOk { obligations: _, .. }| {
                // Ignore obligations, since we are unrolling
                // everything anyway.
            })
        })
    }

    pub fn can_eq<T>(&self,
                      param_env: ty::ParamEnv<'tcx>,
                      a: T,
                      b: T)
                      -> UnitResult<'tcx>
        where T: at::ToTrace<'tcx>
    {
        let origin = &ObligationCause::dummy();
        self.probe(|_| {
            self.at(origin, param_env).eq(a, b).map(|InferOk { obligations: _, .. }| {
                // Ignore obligations, since we are unrolling
                // everything anyway.
            })
        })
    }

    pub fn sub_regions(&self,
                       origin: SubregionOrigin<'tcx>,
                       a: ty::Region<'tcx>,
                       b: ty::Region<'tcx>) {
        debug!("sub_regions({:?} <: {:?})", a, b);
        self.borrow_region_constraints().make_subregion(origin, a, b);
    }

    pub fn equality_predicate(&self,
                              cause: &ObligationCause<'tcx>,
                              param_env: ty::ParamEnv<'tcx>,
                              predicate: &ty::PolyEquatePredicate<'tcx>)
        -> InferResult<'tcx, ()>
    {
        self.commit_if_ok(|snapshot| {
            let (ty::EquatePredicate(a, b), skol_map) =
                self.skolemize_late_bound_regions(predicate, snapshot);
            let cause_span = cause.span;
            let eqty_ok = self.at(cause, param_env).eq(b, a)?;
            self.leak_check(false, cause_span, &skol_map, snapshot)?;
            self.pop_skolemized(skol_map, snapshot);
            Ok(eqty_ok.unit())
        })
    }

    pub fn subtype_predicate(&self,
                             cause: &ObligationCause<'tcx>,
                             param_env: ty::ParamEnv<'tcx>,
                             predicate: &ty::PolySubtypePredicate<'tcx>)
        -> Option<InferResult<'tcx, ()>>
    {
        // Subtle: it's ok to skip the binder here and resolve because
        // `shallow_resolve` just ignores anything that is not a type
        // variable, and because type variable's can't (at present, at
        // least) capture any of the things bound by this binder.
        //
        // Really, there is no *particular* reason to do this
        // `shallow_resolve` here except as a
        // micro-optimization. Naturally I could not
        // resist. -nmatsakis
        let two_unbound_type_vars = {
            let a = self.shallow_resolve(predicate.skip_binder().a);
            let b = self.shallow_resolve(predicate.skip_binder().b);
            a.is_ty_var() && b.is_ty_var()
        };

        if two_unbound_type_vars {
            // Two unbound type variables? Can't make progress.
            return None;
        }

        Some(self.commit_if_ok(|snapshot| {
            let (ty::SubtypePredicate { a_is_expected, a, b}, skol_map) =
                self.skolemize_late_bound_regions(predicate, snapshot);

            let cause_span = cause.span;
            let ok = self.at(cause, param_env).sub_exp(a_is_expected, a, b)?;
            self.leak_check(false, cause_span, &skol_map, snapshot)?;
            self.pop_skolemized(skol_map, snapshot);
            Ok(ok.unit())
        }))
    }

    pub fn region_outlives_predicate(&self,
                                     cause: &traits::ObligationCause<'tcx>,
                                     predicate: &ty::PolyRegionOutlivesPredicate<'tcx>)
        -> UnitResult<'tcx>
    {
        self.commit_if_ok(|snapshot| {
            let (ty::OutlivesPredicate(r_a, r_b), skol_map) =
                self.skolemize_late_bound_regions(predicate, snapshot);
            let origin =
                SubregionOrigin::from_obligation_cause(cause,
                                                       || RelateRegionParamBound(cause.span));
            self.sub_regions(origin, r_b, r_a); // `b : a` ==> `a <= b`
            self.leak_check(false, cause.span, &skol_map, snapshot)?;
            Ok(self.pop_skolemized(skol_map, snapshot))
        })
    }

    pub fn next_ty_var_id(&self, diverging: bool, origin: TypeVariableOrigin) -> TyVid {
        self.type_variables
            .borrow_mut()
            .new_var(diverging, origin, None)
    }

    pub fn next_ty_var(&self, origin: TypeVariableOrigin) -> Ty<'tcx> {
        self.tcx.mk_var(self.next_ty_var_id(false, origin))
    }

    pub fn next_diverging_ty_var(&self, origin: TypeVariableOrigin) -> Ty<'tcx> {
        self.tcx.mk_var(self.next_ty_var_id(true, origin))
    }

    pub fn next_int_var_id(&self) -> IntVid {
        self.int_unification_table
            .borrow_mut()
            .new_key(None)
    }

    pub fn next_float_var_id(&self) -> FloatVid {
        self.float_unification_table
            .borrow_mut()
            .new_key(None)
    }

    /// Create a fresh region variable with the next available index.
    ///
    /// # Parameters
    ///
    /// - `origin`: information about why we created this variable, for use
    ///   during diagnostics / error-reporting.
    pub fn next_region_var(&self, origin: RegionVariableOrigin)
                           -> ty::Region<'tcx> {
        self.tcx.mk_region(ty::ReVar(self.borrow_region_constraints().new_region_var(origin)))
    }

    /// Number of region variables created so far.
    pub fn num_region_vars(&self) -> usize {
        self.borrow_region_constraints().var_origins().len()
    }

    /// Just a convenient wrapper of `next_region_var` for using during NLL.
    pub fn next_nll_region_var(&self, origin: NLLRegionVariableOrigin)
                               -> ty::Region<'tcx> {
        self.next_region_var(RegionVariableOrigin::NLL(origin))
    }

    /// Create a region inference variable for the given
    /// region parameter definition.
    pub fn region_var_for_def(&self,
                              span: Span,
                              def: &ty::RegionParameterDef)
                              -> ty::Region<'tcx> {
        self.next_region_var(EarlyBoundRegion(span, def.name))
    }

    /// Create a type inference variable for the given
    /// type parameter definition. The substitutions are
    /// for actual parameters that may be referred to by
    /// the default of this type parameter, if it exists.
    /// E.g. `struct Foo<A, B, C = (A, B)>(...);` when
    /// used in a path such as `Foo::<T, U>::new()` will
    /// use an inference variable for `C` with `[T, U]`
    /// as the substitutions for the default, `(T, U)`.
    pub fn type_var_for_def(&self,
                            span: Span,
                            def: &ty::TypeParameterDef,
                            substs: &[Kind<'tcx>])
                            -> Ty<'tcx> {
        let default = if def.has_default {
            let default = self.tcx.type_of(def.def_id);
            Some(type_variable::Default {
                ty: default.subst_spanned(self.tcx, substs, Some(span)),
                origin_span: span,
                def_id: def.def_id
            })
        } else {
            None
        };


        let ty_var_id = self.type_variables
                            .borrow_mut()
                            .new_var(false,
                                     TypeVariableOrigin::TypeParameterDefinition(span, def.name),
                                     default);

        self.tcx.mk_var(ty_var_id)
    }

    /// Given a set of generics defined on a type or impl, returns a substitution mapping each
    /// type/region parameter to a fresh inference variable.
    pub fn fresh_substs_for_item(&self,
                                 span: Span,
                                 def_id: DefId)
                                 -> &'tcx Substs<'tcx> {
        Substs::for_item(self.tcx, def_id, |def, _| {
            self.region_var_for_def(span, def)
        }, |def, substs| {
            self.type_var_for_def(span, def, substs)
        })
    }

    /// True if errors have been reported since this infcx was
    /// created.  This is sometimes used as a heuristic to skip
    /// reporting errors that often occur as a result of earlier
    /// errors, but where it's hard to be 100% sure (e.g., unresolved
    /// inference variables, regionck errors).
    pub fn is_tainted_by_errors(&self) -> bool {
        debug!("is_tainted_by_errors(err_count={}, err_count_on_creation={}, \
                tainted_by_errors_flag={})",
               self.tcx.sess.err_count(),
               self.err_count_on_creation,
               self.tainted_by_errors_flag.get());

        if self.tcx.sess.err_count() > self.err_count_on_creation {
            return true; // errors reported since this infcx was made
        }
        self.tainted_by_errors_flag.get()
    }

    /// Set the "tainted by errors" flag to true. We call this when we
    /// observe an error from a prior pass.
    pub fn set_tainted_by_errors(&self) {
        debug!("set_tainted_by_errors()");
        self.tainted_by_errors_flag.set(true)
    }

    /// Process the region constraints and report any errors that
    /// result. After this, no more unification operations should be
    /// done -- or the compiler will panic -- but it is legal to use
    /// `resolve_type_vars_if_possible` as well as `fully_resolve`.
    pub fn resolve_regions_and_report_errors(&self,
                                             region_context: DefId,
                                             region_map: &region::ScopeTree,
                                             outlives_env: &OutlivesEnvironment<'tcx>) {
        assert!(self.is_tainted_by_errors() || self.region_obligations.borrow().is_empty(),
                "region_obligations not empty: {:#?}",
                self.region_obligations.borrow());

        let region_rels = &RegionRelations::new(self.tcx,
                                                region_context,
                                                region_map,
                                                outlives_env.free_region_map());
        let (var_origins, data) = self.region_constraints.borrow_mut()
                                                         .take()
                                                         .expect("regions already resolved")
                                                         .into_origins_and_data();
        let (lexical_region_resolutions, errors) =
            lexical_region_resolve::resolve(region_rels, var_origins, data);

        let old_value = self.lexical_region_resolutions.replace(Some(lexical_region_resolutions));
        assert!(old_value.is_none());

        if !self.is_tainted_by_errors() {
            // As a heuristic, just skip reporting region errors
            // altogether if other errors have been reported while
            // this infcx was in use.  This is totally hokey but
            // otherwise we have a hard time separating legit region
            // errors from silly ones.
            self.report_region_errors(region_map, &errors); // see error_reporting module
        }
    }

    /// Obtains (and clears) the current set of region
    /// constraints. The inference context is still usable: further
    /// unifications will simply add new constraints.
    ///
    /// This method is not meant to be used with normal lexical region
    /// resolution. Rather, it is used in the NLL mode as a kind of
    /// interim hack: basically we run normal type-check and generate
    /// region constraints as normal, but then we take them and
    /// translate them into the form that the NLL solver
    /// understands. See the NLL module for mode details.
    pub fn take_and_reset_region_constraints(&self) -> RegionConstraintData<'tcx> {
        assert!(self.region_obligations.borrow().is_empty(),
                "region_obligations not empty: {:#?}",
                self.region_obligations.borrow());

        self.borrow_region_constraints().take_and_reset_data()
    }

    /// Takes ownership of the list of variable regions. This implies
    /// that all the region constriants have already been taken, and
    /// hence that `resolve_regions_and_report_errors` can never be
    /// called. This is used only during NLL processing to "hand off" ownership
    /// of the set of region vairables into the NLL region context.
    pub fn take_region_var_origins(&self) -> VarOrigins {
        let (var_origins, data) = self.region_constraints.borrow_mut()
                                                         .take()
                                                         .expect("regions already resolved")
                                                         .into_origins_and_data();
        assert!(data.is_empty());
        var_origins
    }

    pub fn ty_to_string(&self, t: Ty<'tcx>) -> String {
        self.resolve_type_vars_if_possible(&t).to_string()
    }

    pub fn tys_to_string(&self, ts: &[Ty<'tcx>]) -> String {
        let tstrs: Vec<String> = ts.iter().map(|t| self.ty_to_string(*t)).collect();
        format!("({})", tstrs.join(", "))
    }

    pub fn trait_ref_to_string(&self, t: &ty::TraitRef<'tcx>) -> String {
        self.resolve_type_vars_if_possible(t).to_string()
    }

    pub fn shallow_resolve(&self, typ: Ty<'tcx>) -> Ty<'tcx> {
        match typ.sty {
            ty::TyInfer(ty::TyVar(v)) => {
                // Not entirely obvious: if `typ` is a type variable,
                // it can be resolved to an int/float variable, which
                // can then be recursively resolved, hence the
                // recursion. Note though that we prevent type
                // variables from unifying to other type variables
                // directly (though they may be embedded
                // structurally), and we prevent cycles in any case,
                // so this recursion should always be of very limited
                // depth.
                self.type_variables.borrow_mut()
                    .probe(v)
                    .map(|t| self.shallow_resolve(t))
                    .unwrap_or(typ)
            }

            ty::TyInfer(ty::IntVar(v)) => {
                self.int_unification_table
                    .borrow_mut()
                    .probe(v)
                    .map(|v| v.to_type(self.tcx))
                    .unwrap_or(typ)
            }

            ty::TyInfer(ty::FloatVar(v)) => {
                self.float_unification_table
                    .borrow_mut()
                    .probe(v)
                    .map(|v| v.to_type(self.tcx))
                    .unwrap_or(typ)
            }

            _ => {
                typ
            }
        }
    }

    pub fn resolve_type_vars_if_possible<T>(&self, value: &T) -> T
        where T: TypeFoldable<'tcx>
    {
        /*!
         * Where possible, replaces type/int/float variables in
         * `value` with their final value. Note that region variables
         * are unaffected. If a type variable has not been unified, it
         * is left as is.  This is an idempotent operation that does
         * not affect inference state in any way and so you can do it
         * at will.
         */

        if !value.needs_infer() {
            return value.clone(); // avoid duplicated subst-folding
        }
        let mut r = resolve::OpportunisticTypeResolver::new(self);
        value.fold_with(&mut r)
    }

    /// Returns true if `T` contains unresolved type variables. In the
    /// process of visiting `T`, this will resolve (where possible)
    /// type variables in `T`, but it never constructs the final,
    /// resolved type, so it's more efficient than
    /// `resolve_type_vars_if_possible()`.
    pub fn any_unresolved_type_vars<T>(&self, value: &T) -> bool
        where T: TypeFoldable<'tcx>
    {
        let mut r = resolve::UnresolvedTypeFinder::new(self);
        value.visit_with(&mut r)
    }

    pub fn resolve_type_and_region_vars_if_possible<T>(&self, value: &T) -> T
        where T: TypeFoldable<'tcx>
    {
        let mut r = resolve::OpportunisticTypeAndRegionResolver::new(self);
        value.fold_with(&mut r)
    }

    pub fn fully_resolve<T:TypeFoldable<'tcx>>(&self, value: &T) -> FixupResult<T> {
        /*!
         * Attempts to resolve all type/region variables in
         * `value`. Region inference must have been run already (e.g.,
         * by calling `resolve_regions_and_report_errors`).  If some
         * variable was never unified, an `Err` results.
         *
         * This method is idempotent, but it not typically not invoked
         * except during the writeback phase.
         */

        resolve::fully_resolve(self, value)
    }

    // [Note-Type-error-reporting]
    // An invariant is that anytime the expected or actual type is TyError (the special
    // error type, meaning that an error occurred when typechecking this expression),
    // this is a derived error. The error cascaded from another error (that was already
    // reported), so it's not useful to display it to the user.
    // The following methods implement this logic.
    // They check if either the actual or expected type is TyError, and don't print the error
    // in this case. The typechecker should only ever report type errors involving mismatched
    // types using one of these methods, and should not call span_err directly for such
    // errors.

    pub fn type_error_struct_with_diag<M>(&self,
                                          sp: Span,
                                          mk_diag: M,
                                          actual_ty: Ty<'tcx>)
                                          -> DiagnosticBuilder<'tcx>
        where M: FnOnce(String) -> DiagnosticBuilder<'tcx>,
    {
        let actual_ty = self.resolve_type_vars_if_possible(&actual_ty);
        debug!("type_error_struct_with_diag({:?}, {:?})", sp, actual_ty);

        // Don't report an error if actual type is TyError.
        if actual_ty.references_error() {
            return self.tcx.sess.diagnostic().struct_dummy();
        }

        mk_diag(self.ty_to_string(actual_ty))
    }

    pub fn report_mismatched_types(&self,
                                   cause: &ObligationCause<'tcx>,
                                   expected: Ty<'tcx>,
                                   actual: Ty<'tcx>,
                                   err: TypeError<'tcx>)
                                   -> DiagnosticBuilder<'tcx> {
        let trace = TypeTrace::types(cause, true, expected, actual);
        self.report_and_explain_type_error(trace, &err)
    }

    pub fn report_conflicting_default_types(&self,
                                            span: Span,
                                            body_id: ast::NodeId,
                                            expected: type_variable::Default<'tcx>,
                                            actual: type_variable::Default<'tcx>) {
        let trace = TypeTrace {
            cause: ObligationCause::misc(span, body_id),
            values: Types(ExpectedFound {
                expected: expected.ty,
                found: actual.ty
            })
        };

        self.report_and_explain_type_error(
            trace,
            &TypeError::TyParamDefaultMismatch(ExpectedFound {
                expected,
                found: actual
            }))
            .emit();
    }

    pub fn replace_late_bound_regions_with_fresh_var<T>(
        &self,
        span: Span,
        lbrct: LateBoundRegionConversionTime,
        value: &ty::Binder<T>)
        -> (T, BTreeMap<ty::BoundRegion, ty::Region<'tcx>>)
        where T : TypeFoldable<'tcx>
    {
        self.tcx.replace_late_bound_regions(
            value,
            |br| self.next_region_var(LateBoundRegion(span, br, lbrct)))
    }

    /// Given a higher-ranked projection predicate like:
    ///
    ///     for<'a> <T as Fn<&'a u32>>::Output = &'a u32
    ///
    /// and a target trait-ref like:
    ///
    ///     <T as Fn<&'x u32>>
    ///
    /// find a substitution `S` for the higher-ranked regions (here,
    /// `['a => 'x]`) such that the predicate matches the trait-ref,
    /// and then return the value (here, `&'a u32`) but with the
    /// substitution applied (hence, `&'x u32`).
    ///
    /// See `higher_ranked_match` in `higher_ranked/mod.rs` for more
    /// details.
    pub fn match_poly_projection_predicate(&self,
                                           cause: ObligationCause<'tcx>,
                                           param_env: ty::ParamEnv<'tcx>,
                                           match_a: ty::PolyProjectionPredicate<'tcx>,
                                           match_b: ty::TraitRef<'tcx>)
                                           -> InferResult<'tcx, HrMatchResult<Ty<'tcx>>>
    {
        let match_pair = match_a.map_bound(|p| (p.projection_ty.trait_ref(self.tcx), p.ty));
        let trace = TypeTrace {
            cause,
            values: TraitRefs(ExpectedFound::new(true, match_pair.skip_binder().0, match_b))
        };

        let mut combine = self.combine_fields(trace, param_env);
        let result = combine.higher_ranked_match(&match_pair, &match_b, true)?;
        Ok(InferOk { value: result, obligations: combine.obligations })
    }

    /// See `verify_generic_bound` method in `region_constraints`
    pub fn verify_generic_bound(&self,
                                origin: SubregionOrigin<'tcx>,
                                kind: GenericKind<'tcx>,
                                a: ty::Region<'tcx>,
                                bound: VerifyBound<'tcx>) {
        debug!("verify_generic_bound({:?}, {:?} <: {:?})",
               kind,
               a,
               bound);

        self.borrow_region_constraints().verify_generic_bound(origin, kind, a, bound);
    }

    pub fn type_moves_by_default(&self,
                                 param_env: ty::ParamEnv<'tcx>,
                                 ty: Ty<'tcx>,
                                 span: Span)
                                 -> bool {
        let ty = self.resolve_type_vars_if_possible(&ty);
        // Even if the type may have no inference variables, during
        // type-checking closure types are in local tables only.
        if !self.in_progress_tables.is_some() || !ty.has_closure_types() {
            if let Some((param_env, ty)) = self.tcx.lift_to_global(&(param_env, ty)) {
                return ty.moves_by_default(self.tcx.global_tcx(), param_env, span);
            }
        }

        let copy_def_id = self.tcx.require_lang_item(lang_items::CopyTraitLangItem);

        // this can get called from typeck (by euv), and moves_by_default
        // rightly refuses to work with inference variables, but
        // moves_by_default has a cache, which we want to use in other
        // cases.
        !traits::type_known_to_meet_bound(self, param_env, ty, copy_def_id, span)
    }

    /// Obtains the latest type of the given closure; this may be a
    /// closure in the current function, in which case its
    /// `ClosureKind` may not yet be known.
    pub fn closure_kind(&self,
                        closure_def_id: DefId,
                        closure_substs: ty::ClosureSubsts<'tcx>)
                        -> Option<ty::ClosureKind>
    {
        let closure_kind_ty = closure_substs.closure_kind_ty(closure_def_id, self.tcx);
        let closure_kind_ty = self.shallow_resolve(&closure_kind_ty);
        closure_kind_ty.to_opt_closure_kind()
    }

    /// Obtain the signature of a closure.  For closures, unlike
    /// `tcx.fn_sig(def_id)`, this method will work during the
    /// type-checking of the enclosing function and return the closure
    /// signature in its partially inferred state.
    pub fn closure_sig(
        &self,
        def_id: DefId,
        substs: ty::ClosureSubsts<'tcx>
    ) -> ty::PolyFnSig<'tcx> {
        let closure_sig_ty = substs.closure_sig_ty(def_id, self.tcx);
        let closure_sig_ty = self.shallow_resolve(&closure_sig_ty);
        closure_sig_ty.fn_sig(self.tcx)
    }

    /// Normalizes associated types in `value`, potentially returning
    /// new obligations that must further be processed.
    pub fn partially_normalize_associated_types_in<T>(&self,
                                                      span: Span,
                                                      body_id: ast::NodeId,
                                                      param_env: ty::ParamEnv<'tcx>,
                                                      value: &T)
                                                      -> InferOk<'tcx, T>
        where T : TypeFoldable<'tcx>
    {
        debug!("partially_normalize_associated_types_in(value={:?})", value);
        let mut selcx = traits::SelectionContext::new(self);
        let cause = ObligationCause::misc(span, body_id);
        let traits::Normalized { value, obligations } =
            traits::normalize(&mut selcx, param_env, cause, value);
        debug!("partially_normalize_associated_types_in: result={:?} predicates={:?}",
            value,
            obligations);
        InferOk { value, obligations }
    }

    fn borrow_region_constraints(&self) -> RefMut<'_, RegionConstraintCollector<'tcx>> {
        RefMut::map(
            self.region_constraints.borrow_mut(),
            |c| c.as_mut().expect("region constraints already solved"))
    }
}

impl<'a, 'gcx, 'tcx> TypeTrace<'tcx> {
    pub fn span(&self) -> Span {
        self.cause.span
    }

    pub fn types(cause: &ObligationCause<'tcx>,
                 a_is_expected: bool,
                 a: Ty<'tcx>,
                 b: Ty<'tcx>)
                 -> TypeTrace<'tcx> {
        TypeTrace {
            cause: cause.clone(),
            values: Types(ExpectedFound::new(a_is_expected, a, b))
        }
    }

    pub fn dummy(tcx: TyCtxt<'a, 'gcx, 'tcx>) -> TypeTrace<'tcx> {
        TypeTrace {
            cause: ObligationCause::dummy(),
            values: Types(ExpectedFound {
                expected: tcx.types.err,
                found: tcx.types.err,
            })
        }
    }
}

impl<'tcx> fmt::Debug for TypeTrace<'tcx> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "TypeTrace({:?})", self.cause)
    }
}

impl<'tcx> SubregionOrigin<'tcx> {
    pub fn span(&self) -> Span {
        match *self {
            Subtype(ref a) => a.span(),
            InfStackClosure(a) => a,
            InvokeClosure(a) => a,
            DerefPointer(a) => a,
            FreeVariable(a, _) => a,
            IndexSlice(a) => a,
            RelateObjectBound(a) => a,
            RelateParamBound(a, _) => a,
            RelateRegionParamBound(a) => a,
            RelateDefaultParamBound(a, _) => a,
            Reborrow(a) => a,
            ReborrowUpvar(a, _) => a,
            DataBorrowed(_, a) => a,
            ReferenceOutlivesReferent(_, a) => a,
            ParameterInScope(_, a) => a,
            ExprTypeIsNotInScope(_, a) => a,
            BindingTypeIsNotValidAtDecl(a) => a,
            CallRcvr(a) => a,
            CallArg(a) => a,
            CallReturn(a) => a,
            Operand(a) => a,
            AddrOf(a) => a,
            AutoBorrow(a) => a,
            SafeDestructor(a) => a,
            CompareImplMethodObligation { span, .. } => span,
        }
    }

    pub fn from_obligation_cause<F>(cause: &traits::ObligationCause<'tcx>,
                                    default: F)
                                    -> Self
        where F: FnOnce() -> Self
    {
        match cause.code {
            traits::ObligationCauseCode::ReferenceOutlivesReferent(ref_type) =>
                SubregionOrigin::ReferenceOutlivesReferent(ref_type, cause.span),

            traits::ObligationCauseCode::CompareImplMethodObligation { item_name,
                                                                       impl_item_def_id,
                                                                       trait_item_def_id, } =>
                SubregionOrigin::CompareImplMethodObligation {
                    span: cause.span,
                    item_name,
                    impl_item_def_id,
                    trait_item_def_id,
                },

            _ => default(),
        }
    }
}

impl RegionVariableOrigin {
    pub fn span(&self) -> Span {
        match *self {
            MiscVariable(a) => a,
            PatternRegion(a) => a,
            AddrOfRegion(a) => a,
            Autoref(a) => a,
            Coercion(a) => a,
            EarlyBoundRegion(a, ..) => a,
            LateBoundRegion(a, ..) => a,
            BoundRegionInCoherence(_) => syntax_pos::DUMMY_SP,
            UpvarRegion(_, a) => a,
            NLL(..) => bug!("NLL variable used with `span`"),
        }
    }
}

impl<'tcx> TypeFoldable<'tcx> for ValuePairs<'tcx> {
    fn super_fold_with<'gcx: 'tcx, F: TypeFolder<'gcx, 'tcx>>(&self, folder: &mut F) -> Self {
        match *self {
            ValuePairs::Types(ref ef) => {
                ValuePairs::Types(ef.fold_with(folder))
            }
            ValuePairs::TraitRefs(ref ef) => {
                ValuePairs::TraitRefs(ef.fold_with(folder))
            }
            ValuePairs::PolyTraitRefs(ref ef) => {
                ValuePairs::PolyTraitRefs(ef.fold_with(folder))
            }
        }
    }

    fn super_visit_with<V: TypeVisitor<'tcx>>(&self, visitor: &mut V) -> bool {
        match *self {
            ValuePairs::Types(ref ef) => ef.visit_with(visitor),
            ValuePairs::TraitRefs(ref ef) => ef.visit_with(visitor),
            ValuePairs::PolyTraitRefs(ref ef) => ef.visit_with(visitor),
        }
    }
}

impl<'tcx> TypeFoldable<'tcx> for TypeTrace<'tcx> {
    fn super_fold_with<'gcx: 'tcx, F: TypeFolder<'gcx, 'tcx>>(&self, folder: &mut F) -> Self {
        TypeTrace {
            cause: self.cause.fold_with(folder),
            values: self.values.fold_with(folder)
        }
    }

    fn super_visit_with<V: TypeVisitor<'tcx>>(&self, visitor: &mut V) -> bool {
        self.cause.visit_with(visitor) || self.values.visit_with(visitor)
    }
}

impl<'tcx> fmt::Debug for RegionObligation<'tcx> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "RegionObligation(sub_region={:?}, sup_type={:?})",
               self.sub_region,
               self.sup_type)
    }
}