1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your // option. This file may not be copied, modified, or distributed // except according to those terms. use infer::type_variable::TypeVariableMap; use ty::{self, Ty, TyCtxt}; use ty::fold::{TypeFoldable, TypeFolder}; use super::InferCtxt; use super::RegionVariableOrigin; impl<'a, 'gcx, 'tcx> InferCtxt<'a, 'gcx, 'tcx> { /// This rather funky routine is used while processing expected /// types. What happens here is that we want to propagate a /// coercion through the return type of a fn to its /// argument. Consider the type of `Option::Some`, which is /// basically `for<T> fn(T) -> Option<T>`. So if we have an /// expression `Some(&[1, 2, 3])`, and that has the expected type /// `Option<&[u32]>`, we would like to type check `&[1, 2, 3]` /// with the expectation of `&[u32]`. This will cause us to coerce /// from `&[u32; 3]` to `&[u32]` and make the users life more /// pleasant. /// /// The way we do this is using `fudge_regions_if_ok`. What the /// routine actually does is to start a snapshot and execute the /// closure `f`. In our example above, what this closure will do /// is to unify the expectation (`Option<&[u32]>`) with the actual /// return type (`Option<?T>`, where `?T` represents the variable /// instantiated for `T`). This will cause `?T` to be unified /// with `&?a [u32]`, where `?a` is a fresh lifetime variable. The /// input type (`?T`) is then returned by `f()`. /// /// At this point, `fudge_regions_if_ok` will normalize all type /// variables, converting `?T` to `&?a [u32]` and end the /// snapshot. The problem is that we can't just return this type /// out, because it references the region variable `?a`, and that /// region variable was popped when we popped the snapshot. /// /// So what we do is to keep a list (`region_vars`, in the code below) /// of region variables created during the snapshot (here, `?a`). We /// fold the return value and replace any such regions with a *new* /// region variable (e.g., `?b`) and return the result (`&?b [u32]`). /// This can then be used as the expectation for the fn argument. /// /// The important point here is that, for soundness purposes, the /// regions in question are not particularly important. We will /// use the expected types to guide coercions, but we will still /// type-check the resulting types from those coercions against /// the actual types (`?T`, `Option<?T`) -- and remember that /// after the snapshot is popped, the variable `?T` is no longer /// unified. pub fn fudge_regions_if_ok<T, E, F>(&self, origin: &RegionVariableOrigin, f: F) -> Result<T, E> where F: FnOnce() -> Result<T, E>, T: TypeFoldable<'tcx>, { debug!("fudge_regions_if_ok(origin={:?})", origin); let (type_variables, region_vars, value) = self.probe(|snapshot| { match f() { Ok(value) => { let value = self.resolve_type_vars_if_possible(&value); // At this point, `value` could in principle refer // to types/regions that have been created during // the snapshot. Once we exit `probe()`, those are // going to be popped, so we will have to // eliminate any references to them. let type_variables = self.type_variables.borrow_mut().types_created_since_snapshot( &snapshot.type_snapshot); let region_vars = self.borrow_region_constraints().vars_created_since_snapshot( &snapshot.region_constraints_snapshot); Ok((type_variables, region_vars, value)) } Err(e) => Err(e), } })?; // At this point, we need to replace any of the now-popped // type/region variables that appear in `value` with a fresh // variable of the appropriate kind. We can't do this during // the probe because they would just get popped then too. =) // Micro-optimization: if no variables have been created, then // `value` can't refer to any of them. =) So we can just return it. if type_variables.is_empty() && region_vars.is_empty() { return Ok(value); } let mut fudger = RegionFudger { infcx: self, type_variables: &type_variables, region_vars: ®ion_vars, origin, }; Ok(value.fold_with(&mut fudger)) } } pub struct RegionFudger<'a, 'gcx: 'a+'tcx, 'tcx: 'a> { infcx: &'a InferCtxt<'a, 'gcx, 'tcx>, type_variables: &'a TypeVariableMap, region_vars: &'a Vec<ty::RegionVid>, origin: &'a RegionVariableOrigin, } impl<'a, 'gcx, 'tcx> TypeFolder<'gcx, 'tcx> for RegionFudger<'a, 'gcx, 'tcx> { fn tcx<'b>(&'b self) -> TyCtxt<'b, 'gcx, 'tcx> { self.infcx.tcx } fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> { match ty.sty { ty::TyInfer(ty::InferTy::TyVar(vid)) => { match self.type_variables.get(&vid) { None => { // This variable was created before the // "fudging". Since we refresh all type // variables to their binding anyhow, we know // that it is unbound, so we can just return // it. debug_assert!(self.infcx.type_variables.borrow_mut().probe(vid).is_none()); ty } Some(&origin) => { // This variable was created during the // fudging. Recreate it with a fresh variable // here. self.infcx.next_ty_var(origin) } } } _ => ty.super_fold_with(self), } } fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> { match *r { ty::ReVar(v) if self.region_vars.contains(&v) => { self.infcx.next_region_var(self.origin.clone()) } _ => { r } } } }