1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! Error Reporting Code for the inference engine
//!
//! Because of the way inference, and in particular region inference,
//! works, it often happens that errors are not detected until far after
//! the relevant line of code has been type-checked. Therefore, there is
//! an elaborate system to track why a particular constraint in the
//! inference graph arose so that we can explain to the user what gave
//! rise to a particular error.
//!
//! The basis of the system are the "origin" types. An "origin" is the
//! reason that a constraint or inference variable arose. There are
//! different "origin" enums for different kinds of constraints/variables
//! (e.g., `TypeOrigin`, `RegionVariableOrigin`). An origin always has
//! a span, but also more information so that we can generate a meaningful
//! error message.
//!
//! Having a catalog of all the different reasons an error can arise is
//! also useful for other reasons, like cross-referencing FAQs etc, though
//! we are not really taking advantage of this yet.
//!
//! # Region Inference
//!
//! Region inference is particularly tricky because it always succeeds "in
//! the moment" and simply registers a constraint. Then, at the end, we
//! can compute the full graph and report errors, so we need to be able to
//! store and later report what gave rise to the conflicting constraints.
//!
//! # Subtype Trace
//!
//! Determining whether `T1 <: T2` often involves a number of subtypes and
//! subconstraints along the way. A "TypeTrace" is an extended version
//! of an origin that traces the types and other values that were being
//! compared. It is not necessarily comprehensive (in fact, at the time of
//! this writing it only tracks the root values being compared) but I'd
//! like to extend it to include significant "waypoints". For example, if
//! you are comparing `(T1, T2) <: (T3, T4)`, and the problem is that `T2
//! <: T4` fails, I'd like the trace to include enough information to say
//! "in the 2nd element of the tuple". Similarly, failures when comparing
//! arguments or return types in fn types should be able to cite the
//! specific position, etc.
//!
//! # Reality vs plan
//!
//! Of course, there is still a LOT of code in typeck that has yet to be
//! ported to this system, and which relies on string concatenation at the
//! time of error detection.

use infer;
use super::{InferCtxt, TypeTrace, SubregionOrigin, RegionVariableOrigin, ValuePairs};
use super::region_constraints::GenericKind;
use super::lexical_region_resolve::RegionResolutionError;

use std::fmt;
use hir;
use hir::map as hir_map;
use hir::def_id::DefId;
use middle::region;
use traits::{ObligationCause, ObligationCauseCode};
use ty::{self, Region, Ty, TyCtxt, TypeFoldable, TypeVariants};
use ty::error::TypeError;
use syntax::ast::DUMMY_NODE_ID;
use syntax_pos::{Pos, Span};
use errors::{DiagnosticBuilder, DiagnosticStyledString};

use rustc_data_structures::indexed_vec::Idx;

mod note;

mod need_type_info;

mod named_anon_conflict;
#[macro_use]
mod util;
mod different_lifetimes;

impl<'a, 'gcx, 'tcx> TyCtxt<'a, 'gcx, 'tcx> {
    pub fn note_and_explain_region(self,
                                   region_scope_tree: &region::ScopeTree,
                                   err: &mut DiagnosticBuilder,
                                   prefix: &str,
                                   region: ty::Region<'tcx>,
                                   suffix: &str) {
        fn item_scope_tag(item: &hir::Item) -> &'static str {
            match item.node {
                hir::ItemImpl(..) => "impl",
                hir::ItemStruct(..) => "struct",
                hir::ItemUnion(..) => "union",
                hir::ItemEnum(..) => "enum",
                hir::ItemTrait(..) => "trait",
                hir::ItemFn(..) => "function body",
                _ => "item"
            }
        }

        fn trait_item_scope_tag(item: &hir::TraitItem) -> &'static str {
            match item.node {
                hir::TraitItemKind::Method(..) => "method body",
                hir::TraitItemKind::Const(..) |
                hir::TraitItemKind::Type(..) => "associated item"
            }
        }

        fn impl_item_scope_tag(item: &hir::ImplItem) -> &'static str {
            match item.node {
                hir::ImplItemKind::Method(..) => "method body",
                hir::ImplItemKind::Const(..) |
                hir::ImplItemKind::Type(_) => "associated item"
            }
        }

        fn explain_span<'a, 'gcx, 'tcx>(tcx: TyCtxt<'a, 'gcx, 'tcx>,
                                        heading: &str, span: Span)
                                        -> (String, Option<Span>) {
            let lo = tcx.sess.codemap().lookup_char_pos_adj(span.lo());
            (format!("the {} at {}:{}", heading, lo.line, lo.col.to_usize() + 1),
             Some(span))
        }

        let (description, span) = match *region {
            ty::ReScope(scope) => {
                let new_string;
                let unknown_scope = || {
                    format!("{}unknown scope: {:?}{}.  Please report a bug.",
                            prefix, scope, suffix)
                };
                let span = scope.span(self, region_scope_tree);
                let tag = match self.hir.find(scope.node_id(self, region_scope_tree)) {
                    Some(hir_map::NodeBlock(_)) => "block",
                    Some(hir_map::NodeExpr(expr)) => match expr.node {
                        hir::ExprCall(..) => "call",
                        hir::ExprMethodCall(..) => "method call",
                        hir::ExprMatch(.., hir::MatchSource::IfLetDesugar { .. }) => "if let",
                        hir::ExprMatch(.., hir::MatchSource::WhileLetDesugar) =>  "while let",
                        hir::ExprMatch(.., hir::MatchSource::ForLoopDesugar) =>  "for",
                        hir::ExprMatch(..) => "match",
                        _ => "expression",
                    },
                    Some(hir_map::NodeStmt(_)) => "statement",
                    Some(hir_map::NodeItem(it)) => item_scope_tag(&it),
                    Some(hir_map::NodeTraitItem(it)) => trait_item_scope_tag(&it),
                    Some(hir_map::NodeImplItem(it)) => impl_item_scope_tag(&it),
                    Some(_) | None => {
                        err.span_note(span, &unknown_scope());
                        return;
                    }
                };
                let scope_decorated_tag = match scope.data() {
                    region::ScopeData::Node(_) => tag,
                    region::ScopeData::CallSite(_) => {
                        "scope of call-site for function"
                    }
                    region::ScopeData::Arguments(_) => {
                        "scope of function body"
                    }
                    region::ScopeData::Destruction(_) => {
                        new_string = format!("destruction scope surrounding {}", tag);
                        &new_string[..]
                    }
                    region::ScopeData::Remainder(r) => {
                        new_string = format!("block suffix following statement {}",
                                             r.first_statement_index.index());
                        &new_string[..]
                    }
                };
                explain_span(self, scope_decorated_tag, span)
            }

            ty::ReEarlyBound(_) |
            ty::ReFree(_) => {
                let scope = region.free_region_binding_scope(self);
                let prefix = match *region {
                    ty::ReEarlyBound(ref br) => {
                        format!("the lifetime {} as defined on", br.name)
                    }
                    ty::ReFree(ref fr) => {
                        match fr.bound_region {
                            ty::BrAnon(idx) => {
                                format!("the anonymous lifetime #{} defined on", idx + 1)
                            }
                            ty::BrFresh(_) => "an anonymous lifetime defined on".to_owned(),
                            _ => {
                                format!("the lifetime {} as defined on",
                                        fr.bound_region)
                            }
                        }
                    }
                    _ => bug!()
                };

                let node = self.hir.as_local_node_id(scope)
                                   .unwrap_or(DUMMY_NODE_ID);
                let unknown;
                let tag = match self.hir.find(node) {
                    Some(hir_map::NodeBlock(_)) |
                    Some(hir_map::NodeExpr(_)) => "body",
                    Some(hir_map::NodeItem(it)) => item_scope_tag(&it),
                    Some(hir_map::NodeTraitItem(it)) => trait_item_scope_tag(&it),
                    Some(hir_map::NodeImplItem(it)) => impl_item_scope_tag(&it),

                    // this really should not happen, but it does:
                    // FIXME(#27942)
                    Some(_) => {
                        unknown = format!("unexpected node ({}) for scope {:?}.  \
                                           Please report a bug.",
                                          self.hir.node_to_string(node), scope);
                        &unknown
                    }
                    None => {
                        unknown = format!("unknown node for scope {:?}.  \
                                           Please report a bug.", scope);
                        &unknown
                    }
                };
                let (msg, opt_span) = explain_span(self, tag, self.hir.span(node));
                (format!("{} {}", prefix, msg), opt_span)
            }

            ty::ReStatic => ("the static lifetime".to_owned(), None),

            ty::ReEmpty => ("the empty lifetime".to_owned(), None),

            // FIXME(#13998) ReSkolemized should probably print like
            // ReFree rather than dumping Debug output on the user.
            //
            // We shouldn't really be having unification failures with ReVar
            // and ReLateBound though.
            ty::ReSkolemized(..) |
            ty::ReVar(_) |
            ty::ReLateBound(..) |
            ty::ReErased => {
                (format!("lifetime {:?}", region), None)
            }
        };
        let message = format!("{}{}{}", prefix, description, suffix);
        if let Some(span) = span {
            err.span_note(span, &message);
        } else {
            err.note(&message);
        }
    }
}

impl<'a, 'gcx, 'tcx> InferCtxt<'a, 'gcx, 'tcx> {
    pub fn report_region_errors(&self,
                                region_scope_tree: &region::ScopeTree,
                                errors: &Vec<RegionResolutionError<'tcx>>) {
        debug!("report_region_errors(): {} errors to start", errors.len());

        if self.tcx.sess.opts.debugging_opts.nll {
            for error in errors {
                match *error {
                    RegionResolutionError::ConcreteFailure(ref origin, ..) |
                    RegionResolutionError::GenericBoundFailure(ref origin, ..) => {
                        self.tcx.sess.span_warn(
                            origin.span(),
                            "not reporting region error due to -Znll");
                    }

                    RegionResolutionError::SubSupConflict(ref rvo, ..) => {
                        self.tcx.sess.span_warn(
                            rvo.span(),
                            "not reporting region error due to -Znll");
                    }
                }
            }

            return;
        }

        // try to pre-process the errors, which will group some of them
        // together into a `ProcessedErrors` group:
        let errors = self.process_errors(errors);

        debug!("report_region_errors: {} errors after preprocessing", errors.len());

        for error in errors {
            debug!("report_region_errors: error = {:?}", error);

            if !self.try_report_named_anon_conflict(&error) &&
                !self.try_report_anon_anon_conflict(&error)
            {
                match error.clone() {
                    // These errors could indicate all manner of different
                    // problems with many different solutions. Rather
                    // than generate a "one size fits all" error, what we
                    // attempt to do is go through a number of specific
                    // scenarios and try to find the best way to present
                    // the error. If all of these fails, we fall back to a rather
                    // general bit of code that displays the error information
                    RegionResolutionError::ConcreteFailure(origin, sub, sup) => {
                        self.report_concrete_failure(region_scope_tree, origin, sub, sup).emit();
                    }

                    RegionResolutionError::GenericBoundFailure(kind, param_ty, sub) => {
                        self.report_generic_bound_failure(region_scope_tree, kind, param_ty, sub);
                    }

                    RegionResolutionError::SubSupConflict(var_origin,
                                                          sub_origin,
                                                          sub_r,
                                                          sup_origin,
                                                          sup_r) => {
                        self.report_sub_sup_conflict(region_scope_tree,
                                                     var_origin,
                                                     sub_origin,
                                                     sub_r,
                                                     sup_origin,
                                                     sup_r);
                    }
                }
            }
        }
    }

    // This method goes through all the errors and try to group certain types
    // of error together, for the purpose of suggesting explicit lifetime
    // parameters to the user. This is done so that we can have a more
    // complete view of what lifetimes should be the same.
    // If the return value is an empty vector, it means that processing
    // failed (so the return value of this method should not be used).
    //
    // The method also attempts to weed out messages that seem like
    // duplicates that will be unhelpful to the end-user. But
    // obviously it never weeds out ALL errors.
    fn process_errors(&self, errors: &Vec<RegionResolutionError<'tcx>>)
                      -> Vec<RegionResolutionError<'tcx>> {
        debug!("process_errors()");

        // We want to avoid reporting generic-bound failures if we can
        // avoid it: these have a very high rate of being unhelpful in
        // practice. This is because they are basically secondary
        // checks that test the state of the region graph after the
        // rest of inference is done, and the other kinds of errors
        // indicate that the region constraint graph is internally
        // inconsistent, so these test results are likely to be
        // meaningless.
        //
        // Therefore, we filter them out of the list unless they are
        // the only thing in the list.

        let is_bound_failure = |e: &RegionResolutionError<'tcx>| match *e {
            RegionResolutionError::GenericBoundFailure(..) => true,
            RegionResolutionError::ConcreteFailure(..) |
            RegionResolutionError::SubSupConflict(..) => false,
        };


        let mut errors = if errors.iter().all(|e| is_bound_failure(e)) {
            errors.clone()
        } else {
            errors.iter().filter(|&e| !is_bound_failure(e)).cloned().collect()
        };

        // sort the errors by span, for better error message stability.
        errors.sort_by_key(|u| match *u {
            RegionResolutionError::ConcreteFailure(ref sro, _, _) => sro.span(),
            RegionResolutionError::GenericBoundFailure(ref sro, _, _) => sro.span(),
            RegionResolutionError::SubSupConflict(ref rvo, _, _, _, _) => rvo.span(),
        });
        errors
    }

    /// Adds a note if the types come from similarly named crates
    fn check_and_note_conflicting_crates(&self,
                                         err: &mut DiagnosticBuilder,
                                         terr: &TypeError<'tcx>,
                                         sp: Span) {
        let report_path_match = |err: &mut DiagnosticBuilder, did1: DefId, did2: DefId| {
            // Only external crates, if either is from a local
            // module we could have false positives
            if !(did1.is_local() || did2.is_local()) && did1.krate != did2.krate {
                let exp_path = self.tcx.item_path_str(did1);
                let found_path = self.tcx.item_path_str(did2);
                let exp_abs_path = self.tcx.absolute_item_path_str(did1);
                let found_abs_path = self.tcx.absolute_item_path_str(did2);
                // We compare strings because DefPath can be different
                // for imported and non-imported crates
                if exp_path == found_path
                || exp_abs_path == found_abs_path {
                    let crate_name = self.tcx.crate_name(did1.krate);
                    err.span_note(sp, &format!("Perhaps two different versions \
                                                of crate `{}` are being used?",
                                               crate_name));
                }
            }
        };
        match *terr {
            TypeError::Sorts(ref exp_found) => {
                // if they are both "path types", there's a chance of ambiguity
                // due to different versions of the same crate
                match (&exp_found.expected.sty, &exp_found.found.sty) {
                    (&ty::TyAdt(exp_adt, _), &ty::TyAdt(found_adt, _)) => {
                        report_path_match(err, exp_adt.did, found_adt.did);
                    },
                    _ => ()
                }
            },
            TypeError::Traits(ref exp_found) => {
                report_path_match(err, exp_found.expected, exp_found.found);
            },
            _ => () // FIXME(#22750) handle traits and stuff
        }
    }

    fn note_error_origin(&self,
                         err: &mut DiagnosticBuilder<'tcx>,
                         cause: &ObligationCause<'tcx>)
    {
        match cause.code {
            ObligationCauseCode::MatchExpressionArm { arm_span, source } => match source {
                hir::MatchSource::IfLetDesugar {..} => {
                    err.span_note(arm_span, "`if let` arm with an incompatible type");
                }
                _ => {
                    err.span_note(arm_span, "match arm with an incompatible type");
                }
            },
            _ => ()
        }
    }

    /// Given that `other_ty` is the same as a type argument for `name` in `sub`, populate `value`
    /// highlighting `name` and every type argument that isn't at `pos` (which is `other_ty`), and
    /// populate `other_value` with `other_ty`.
    ///
    /// ```text
    /// Foo<Bar<Qux>>
    /// ^^^^--------^ this is highlighted
    /// |   |
    /// |   this type argument is exactly the same as the other type, not highlighted
    /// this is highlighted
    /// Bar<Qux>
    /// -------- this type is the same as a type argument in the other type, not highlighted
    /// ```
    fn highlight_outer(&self,
                       value: &mut DiagnosticStyledString,
                       other_value: &mut DiagnosticStyledString,
                       name: String,
                       sub: &ty::subst::Substs<'tcx>,
                       pos: usize,
                       other_ty: &Ty<'tcx>) {
        // `value` and `other_value` hold two incomplete type representation for display.
        // `name` is the path of both types being compared. `sub`
        value.push_highlighted(name);
        let len = sub.len();
        if len > 0 {
            value.push_highlighted("<");
        }

        // Output the lifetimes fot the first type
        let lifetimes = sub.regions().map(|lifetime| {
            let s = format!("{}", lifetime);
            if s.is_empty() {
                "'_".to_string()
            } else {
                s
            }
        }).collect::<Vec<_>>().join(", ");
        if !lifetimes.is_empty() {
            if sub.regions().count() < len {
                value.push_normal(lifetimes + &", ");
            } else {
                value.push_normal(lifetimes);
            }
        }

        // Highlight all the type arguments that aren't at `pos` and compare the type argument at
        // `pos` and `other_ty`.
        for (i, type_arg) in sub.types().enumerate() {
            if i == pos {
                let values = self.cmp(type_arg, other_ty);
                value.0.extend((values.0).0);
                other_value.0.extend((values.1).0);
            } else {
                value.push_highlighted(format!("{}", type_arg));
            }

            if len > 0 && i != len - 1 {
                value.push_normal(", ");
            }
            //self.push_comma(&mut value, &mut other_value, len, i);
        }
        if len > 0 {
            value.push_highlighted(">");
        }
    }

    /// If `other_ty` is the same as a type argument present in `sub`, highlight `path` in `t1_out`,
    /// as that is the difference to the other type.
    ///
    /// For the following code:
    ///
    /// ```norun
    /// let x: Foo<Bar<Qux>> = foo::<Bar<Qux>>();
    /// ```
    ///
    /// The type error output will behave in the following way:
    ///
    /// ```text
    /// Foo<Bar<Qux>>
    /// ^^^^--------^ this is highlighted
    /// |   |
    /// |   this type argument is exactly the same as the other type, not highlighted
    /// this is highlighted
    /// Bar<Qux>
    /// -------- this type is the same as a type argument in the other type, not highlighted
    /// ```
    fn cmp_type_arg(&self,
                    mut t1_out: &mut DiagnosticStyledString,
                    mut t2_out: &mut DiagnosticStyledString,
                    path: String,
                    sub: &ty::subst::Substs<'tcx>,
                    other_path: String,
                    other_ty: &Ty<'tcx>) -> Option<()> {
        for (i, ta) in sub.types().enumerate() {
            if &ta == other_ty {
                self.highlight_outer(&mut t1_out, &mut t2_out, path, sub, i, &other_ty);
                return Some(());
            }
            if let &ty::TyAdt(def, _) = &ta.sty {
                let path_ = self.tcx.item_path_str(def.did.clone());
                if path_ == other_path {
                    self.highlight_outer(&mut t1_out, &mut t2_out, path, sub, i, &other_ty);
                    return Some(());
                }
            }
        }
        None
    }

    /// Add a `,` to the type representation only if it is appropriate.
    fn push_comma(&self,
                  value: &mut DiagnosticStyledString,
                  other_value: &mut DiagnosticStyledString,
                  len: usize,
                  pos: usize) {
        if len > 0 && pos != len - 1 {
            value.push_normal(", ");
            other_value.push_normal(", ");
        }
    }

    /// Compare two given types, eliding parts that are the same between them and highlighting
    /// relevant differences, and return two representation of those types for highlighted printing.
    fn cmp(&self, t1: Ty<'tcx>, t2: Ty<'tcx>)
        -> (DiagnosticStyledString, DiagnosticStyledString)
    {
        fn equals<'tcx>(a: &Ty<'tcx>, b: &Ty<'tcx>) -> bool {
            match (&a.sty, &b.sty) {
                (a, b) if *a == *b => true,
                (&ty::TyInt(_), &ty::TyInfer(ty::InferTy::IntVar(_))) |
                (&ty::TyInfer(ty::InferTy::IntVar(_)), &ty::TyInt(_)) |
                (&ty::TyInfer(ty::InferTy::IntVar(_)), &ty::TyInfer(ty::InferTy::IntVar(_))) |
                (&ty::TyFloat(_), &ty::TyInfer(ty::InferTy::FloatVar(_))) |
                (&ty::TyInfer(ty::InferTy::FloatVar(_)), &ty::TyFloat(_)) |
                (&ty::TyInfer(ty::InferTy::FloatVar(_)),
                 &ty::TyInfer(ty::InferTy::FloatVar(_))) => true,
                _ => false,
            }
        }

        fn push_ty_ref<'tcx>(r: &ty::Region<'tcx>,
                             tnm: &ty::TypeAndMut<'tcx>,
                             s: &mut DiagnosticStyledString) {
            let r = &format!("{}", r);
            s.push_highlighted(format!("&{}{}{}",
                                       r,
                                       if r == "" {
                                           ""
                                       } else {
                                           " "
                                       },
                                       if tnm.mutbl == hir::MutMutable {
                                          "mut "
                                       } else {
                                           ""
                                       }));
            s.push_normal(format!("{}", tnm.ty));
        }

        match (&t1.sty, &t2.sty) {
            (&ty::TyAdt(def1, sub1), &ty::TyAdt(def2, sub2)) => {
                let mut values = (DiagnosticStyledString::new(), DiagnosticStyledString::new());
                let path1 = self.tcx.item_path_str(def1.did.clone());
                let path2 = self.tcx.item_path_str(def2.did.clone());
                if def1.did == def2.did {
                    // Easy case. Replace same types with `_` to shorten the output and highlight
                    // the differing ones.
                    //     let x: Foo<Bar, Qux> = y::<Foo<Quz, Qux>>();
                    //     Foo<Bar, _>
                    //     Foo<Quz, _>
                    //         ---  ^ type argument elided
                    //         |
                    //         highlighted in output
                    values.0.push_normal(path1);
                    values.1.push_normal(path2);

                    // Only draw `<...>` if there're lifetime/type arguments.
                    let len = sub1.len();
                    if len > 0 {
                        values.0.push_normal("<");
                        values.1.push_normal("<");
                    }

                    fn lifetime_display(lifetime: Region) -> String {
                        let s = format!("{}", lifetime);
                        if s.is_empty() {
                            "'_".to_string()
                        } else {
                            s
                        }
                    }
                    // At one point we'd like to elide all lifetimes here, they are irrelevant for
                    // all diagnostics that use this output
                    //
                    //     Foo<'x, '_, Bar>
                    //     Foo<'y, '_, Qux>
                    //         ^^  ^^  --- type arguments are not elided
                    //         |   |
                    //         |   elided as they were the same
                    //         not elided, they were different, but irrelevant
                    let lifetimes = sub1.regions().zip(sub2.regions());
                    for (i, lifetimes) in lifetimes.enumerate() {
                        let l1 = lifetime_display(lifetimes.0);
                        let l2 = lifetime_display(lifetimes.1);
                        if l1 == l2 {
                            values.0.push_normal("'_");
                            values.1.push_normal("'_");
                        } else {
                            values.0.push_highlighted(l1);
                            values.1.push_highlighted(l2);
                        }
                        self.push_comma(&mut values.0, &mut values.1, len, i);
                    }

                    // We're comparing two types with the same path, so we compare the type
                    // arguments for both. If they are the same, do not highlight and elide from the
                    // output.
                    //     Foo<_, Bar>
                    //     Foo<_, Qux>
                    //         ^ elided type as this type argument was the same in both sides
                    let type_arguments = sub1.types().zip(sub2.types());
                    let regions_len = sub1.regions().collect::<Vec<_>>().len();
                    for (i, (ta1, ta2)) in type_arguments.enumerate() {
                        let i = i + regions_len;
                        if ta1 == ta2 {
                            values.0.push_normal("_");
                            values.1.push_normal("_");
                        } else {
                            let (x1, x2) = self.cmp(ta1, ta2);
                            (values.0).0.extend(x1.0);
                            (values.1).0.extend(x2.0);
                        }
                        self.push_comma(&mut values.0, &mut values.1, len, i);
                    }

                    // Close the type argument bracket.
                    // Only draw `<...>` if there're lifetime/type arguments.
                    if len > 0 {
                        values.0.push_normal(">");
                        values.1.push_normal(">");
                    }
                    values
                } else {
                    // Check for case:
                    //     let x: Foo<Bar<Qux> = foo::<Bar<Qux>>();
                    //     Foo<Bar<Qux>
                    //         ------- this type argument is exactly the same as the other type
                    //     Bar<Qux>
                    if self.cmp_type_arg(&mut values.0,
                                         &mut values.1,
                                         path1.clone(),
                                         sub1,
                                         path2.clone(),
                                         &t2).is_some() {
                        return values;
                    }
                    // Check for case:
                    //     let x: Bar<Qux> = y:<Foo<Bar<Qux>>>();
                    //     Bar<Qux>
                    //     Foo<Bar<Qux>>
                    //         ------- this type argument is exactly the same as the other type
                    if self.cmp_type_arg(&mut values.1,
                                         &mut values.0,
                                         path2,
                                         sub2,
                                         path1,
                                         &t1).is_some() {
                        return values;
                    }

                    // We couldn't find anything in common, highlight everything.
                    //     let x: Bar<Qux> = y::<Foo<Zar>>();
                    (DiagnosticStyledString::highlighted(format!("{}", t1)),
                     DiagnosticStyledString::highlighted(format!("{}", t2)))
                }
            }

            // When finding T != &T, hightlight only the borrow
            (&ty::TyRef(r1, ref tnm1), _) if equals(&tnm1.ty, &t2) => {
                let mut values = (DiagnosticStyledString::new(), DiagnosticStyledString::new());
                push_ty_ref(&r1, tnm1, &mut values.0);
                values.1.push_normal(format!("{}", t2));
                values
            }
            (_, &ty::TyRef(r2, ref tnm2)) if equals(&t1, &tnm2.ty) => {
                let mut values = (DiagnosticStyledString::new(), DiagnosticStyledString::new());
                values.0.push_normal(format!("{}", t1));
                push_ty_ref(&r2, tnm2, &mut values.1);
                values
            }

            // When encountering &T != &mut T, highlight only the borrow
            (&ty::TyRef(r1, ref tnm1), &ty::TyRef(r2, ref tnm2)) if equals(&tnm1.ty, &tnm2.ty) => {
                let mut values = (DiagnosticStyledString::new(), DiagnosticStyledString::new());
                push_ty_ref(&r1, tnm1, &mut values.0);
                push_ty_ref(&r2, tnm2, &mut values.1);
                values
            }

            _ => {
                if t1 == t2 {
                    // The two types are the same, elide and don't highlight.
                    (DiagnosticStyledString::normal("_"), DiagnosticStyledString::normal("_"))
                } else {
                    // We couldn't find anything in common, highlight everything.
                    (DiagnosticStyledString::highlighted(format!("{}", t1)),
                     DiagnosticStyledString::highlighted(format!("{}", t2)))
                }
            }
        }
    }

    pub fn note_type_err(&self,
                         diag: &mut DiagnosticBuilder<'tcx>,
                         cause: &ObligationCause<'tcx>,
                         secondary_span: Option<(Span, String)>,
                         mut values: Option<ValuePairs<'tcx>>,
                         terr: &TypeError<'tcx>)
    {
        // For some types of errors, expected-found does not make
        // sense, so just ignore the values we were given.
        match terr {
            TypeError::CyclicTy(_) => { values = None; }
            _ => { }
        }

        let (expected_found, exp_found, is_simple_error) = match values {
            None => (None, None, false),
            Some(values) => {
                let (is_simple_error, exp_found) = match values {
                    ValuePairs::Types(exp_found) => {
                        let is_simple_err = exp_found.expected.is_primitive()
                            && exp_found.found.is_primitive();

                        (is_simple_err, Some(exp_found))
                    }
                    _ => (false, None),
                };
                let vals = match self.values_str(&values) {
                    Some((expected, found)) => Some((expected, found)),
                    None => {
                        // Derived error. Cancel the emitter.
                        self.tcx.sess.diagnostic().cancel(diag);
                        return
                    }
                };
                (vals, exp_found, is_simple_error)
            }
        };

        let span = cause.span;

        diag.span_label(span, terr.to_string());
        if let Some((sp, msg)) = secondary_span {
            diag.span_label(sp, msg);
        }

        if let Some((expected, found)) = expected_found {
            match (terr, is_simple_error, expected == found) {
                (&TypeError::Sorts(ref values), false, true) => {
                    diag.note_expected_found_extra(
                        &"type", expected, found,
                        &format!(" ({})", values.expected.sort_string(self.tcx)),
                        &format!(" ({})", values.found.sort_string(self.tcx)));
                }
                (_, false, _) => {
                    if let Some(exp_found) = exp_found {
                        let (def_id, ret_ty) = match exp_found.found.sty {
                            TypeVariants::TyFnDef(def, _) => {
                                (Some(def), Some(self.tcx.fn_sig(def).output()))
                            }
                            _ => (None, None)
                        };

                        let exp_is_struct = match exp_found.expected.sty {
                            TypeVariants::TyAdt(def, _) => def.is_struct(),
                            _ => false
                        };

                        if let (Some(def_id), Some(ret_ty)) = (def_id, ret_ty) {
                            if exp_is_struct && exp_found.expected == ret_ty.0 {
                                let message = format!(
                                    "did you mean `{}(/* fields */)`?",
                                    self.tcx.item_path_str(def_id)
                                );
                                diag.span_label(cause.span, message);
                            }
                        }
                    }

                    diag.note_expected_found(&"type", expected, found);
                }
                _ => (),
            }
        }

        self.check_and_note_conflicting_crates(diag, terr, span);
        self.tcx.note_and_explain_type_err(diag, terr, span);

        // It reads better to have the error origin as the final
        // thing.
        self.note_error_origin(diag, &cause);
    }

    pub fn report_and_explain_type_error(&self,
                                         trace: TypeTrace<'tcx>,
                                         terr: &TypeError<'tcx>)
                                         -> DiagnosticBuilder<'tcx>
    {
        debug!("report_and_explain_type_error(trace={:?}, terr={:?})",
               trace,
               terr);

        let span = trace.cause.span;
        let failure_code = trace.cause.as_failure_code(terr);
        let mut diag = match failure_code {
            FailureCode::Error0317(failure_str) => {
                struct_span_err!(self.tcx.sess, span, E0317, "{}", failure_str)
            }
            FailureCode::Error0580(failure_str) => {
                struct_span_err!(self.tcx.sess, span, E0580, "{}", failure_str)
            }
            FailureCode::Error0308(failure_str) => {
                struct_span_err!(self.tcx.sess, span, E0308, "{}", failure_str)
            }
            FailureCode::Error0644(failure_str) => {
                struct_span_err!(self.tcx.sess, span, E0644, "{}", failure_str)
            }
        };
        self.note_type_err(&mut diag, &trace.cause, None, Some(trace.values), terr);
        diag
    }

    fn values_str(&self, values: &ValuePairs<'tcx>)
        -> Option<(DiagnosticStyledString, DiagnosticStyledString)>
    {
        match *values {
            infer::Types(ref exp_found) => self.expected_found_str_ty(exp_found),
            infer::TraitRefs(ref exp_found) => self.expected_found_str(exp_found),
            infer::PolyTraitRefs(ref exp_found) => self.expected_found_str(exp_found),
        }
    }

    fn expected_found_str_ty(&self,
                             exp_found: &ty::error::ExpectedFound<Ty<'tcx>>)
                             -> Option<(DiagnosticStyledString, DiagnosticStyledString)> {
        let exp_found = self.resolve_type_vars_if_possible(exp_found);
        if exp_found.references_error() {
            return None;
        }

        Some(self.cmp(exp_found.expected, exp_found.found))
    }

    /// Returns a string of the form "expected `{}`, found `{}`".
    fn expected_found_str<T: fmt::Display + TypeFoldable<'tcx>>(
        &self,
        exp_found: &ty::error::ExpectedFound<T>)
        -> Option<(DiagnosticStyledString, DiagnosticStyledString)>
    {
        let exp_found = self.resolve_type_vars_if_possible(exp_found);
        if exp_found.references_error() {
            return None;
        }

        Some((DiagnosticStyledString::highlighted(format!("{}", exp_found.expected)),
              DiagnosticStyledString::highlighted(format!("{}", exp_found.found))))
    }

    fn report_generic_bound_failure(&self,
                                    region_scope_tree: &region::ScopeTree,
                                    origin: SubregionOrigin<'tcx>,
                                    bound_kind: GenericKind<'tcx>,
                                    sub: Region<'tcx>)
    {
        // Attempt to obtain the span of the parameter so we can
        // suggest adding an explicit lifetime bound to it.
        let type_param_span = match (self.in_progress_tables, bound_kind) {
            (Some(ref table), GenericKind::Param(ref param)) => {
                let table = table.borrow();
                table.local_id_root.and_then(|did| {
                    let generics = self.tcx.generics_of(did);
                    // Account for the case where `did` corresponds to `Self`, which doesn't have
                    // the expected type argument.
                    if !param.is_self() {
                        let type_param = generics.type_param(param, self.tcx);
                        let hir = &self.tcx.hir;
                        hir.as_local_node_id(type_param.def_id).map(|id| {
                            // Get the `hir::TyParam` to verify wether it already has any bounds.
                            // We do this to avoid suggesting code that ends up as `T: 'a'b`,
                            // instead we suggest `T: 'a + 'b` in that case.
                            let has_lifetimes = if let hir_map::NodeTyParam(ref p) = hir.get(id) {
                                p.bounds.len() > 0
                            } else {
                                false
                            };
                            let sp = hir.span(id);
                            // `sp` only covers `T`, change it so that it covers
                            // `T:` when appropriate
                            let sp = if has_lifetimes {
                                sp.to(sp.next_point().next_point())
                            } else {
                                sp
                            };
                            (sp, has_lifetimes)
                        })
                    } else {
                        None
                    }
                })
            }
            _ => None,
        };

        let labeled_user_string = match bound_kind {
            GenericKind::Param(ref p) =>
                format!("the parameter type `{}`", p),
            GenericKind::Projection(ref p) =>
                format!("the associated type `{}`", p),
        };

        if let SubregionOrigin::CompareImplMethodObligation {
            span, item_name, impl_item_def_id, trait_item_def_id,
        } = origin {
            self.report_extra_impl_obligation(span,
                                              item_name,
                                              impl_item_def_id,
                                              trait_item_def_id,
                                              &format!("`{}: {}`", bound_kind, sub))
                .emit();
            return;
        }

        fn binding_suggestion<'tcx, S: fmt::Display>(err: &mut DiagnosticBuilder<'tcx>,
                                                     type_param_span: Option<(Span, bool)>,
                                                     bound_kind: GenericKind<'tcx>,
                                                     sub: S) {
            let consider = &format!("consider adding an explicit lifetime bound `{}: {}`...",
                                    bound_kind,
                                    sub);
            if let Some((sp, has_lifetimes)) = type_param_span {
                let tail = if has_lifetimes {
                    " + "
                } else {
                    ""
                };
                let suggestion = format!("{}: {}{}", bound_kind, sub, tail);
                err.span_suggestion_short(sp, consider, suggestion);
            } else {
                err.help(consider);
            }
        }

        let mut err = match *sub {
            ty::ReEarlyBound(_) |
            ty::ReFree(ty::FreeRegion {bound_region: ty::BrNamed(..), ..}) => {
                // Does the required lifetime have a nice name we can print?
                let mut err = struct_span_err!(self.tcx.sess,
                                               origin.span(),
                                               E0309,
                                               "{} may not live long enough",
                                               labeled_user_string);
                binding_suggestion(&mut err, type_param_span, bound_kind, sub);
                err
            }

            ty::ReStatic => {
                // Does the required lifetime have a nice name we can print?
                let mut err = struct_span_err!(self.tcx.sess,
                                               origin.span(),
                                               E0310,
                                               "{} may not live long enough",
                                               labeled_user_string);
                binding_suggestion(&mut err, type_param_span, bound_kind, "'static");
                err
            }

            _ => {
                // If not, be less specific.
                let mut err = struct_span_err!(self.tcx.sess,
                                               origin.span(),
                                               E0311,
                                               "{} may not live long enough",
                                               labeled_user_string);
                err.help(&format!("consider adding an explicit lifetime bound for `{}`",
                                  bound_kind));
                self.tcx.note_and_explain_region(
                    region_scope_tree,
                    &mut err,
                    &format!("{} must be valid for ", labeled_user_string),
                    sub,
                    "...");
                err
            }
        };

        self.note_region_origin(&mut err, &origin);
        err.emit();
    }

    fn report_sub_sup_conflict(&self,
                               region_scope_tree: &region::ScopeTree,
                               var_origin: RegionVariableOrigin,
                               sub_origin: SubregionOrigin<'tcx>,
                               sub_region: Region<'tcx>,
                               sup_origin: SubregionOrigin<'tcx>,
                               sup_region: Region<'tcx>) {
        let mut err = self.report_inference_failure(var_origin);

        self.tcx.note_and_explain_region(region_scope_tree, &mut err,
            "first, the lifetime cannot outlive ",
            sup_region,
            "...");

        self.note_region_origin(&mut err, &sup_origin);

        self.tcx.note_and_explain_region(region_scope_tree, &mut err,
            "but, the lifetime must be valid for ",
            sub_region,
            "...");

        self.note_region_origin(&mut err, &sub_origin);
        err.emit();
    }
}

impl<'a, 'gcx, 'tcx> InferCtxt<'a, 'gcx, 'tcx> {
    fn report_inference_failure(&self,
                                var_origin: RegionVariableOrigin)
                                -> DiagnosticBuilder<'tcx> {
        let br_string = |br: ty::BoundRegion| {
            let mut s = br.to_string();
            if !s.is_empty() {
                s.push_str(" ");
            }
            s
        };
        let var_description = match var_origin {
            infer::MiscVariable(_) => "".to_string(),
            infer::PatternRegion(_) => " for pattern".to_string(),
            infer::AddrOfRegion(_) => " for borrow expression".to_string(),
            infer::Autoref(_) => " for autoref".to_string(),
            infer::Coercion(_) => " for automatic coercion".to_string(),
            infer::LateBoundRegion(_, br, infer::FnCall) => {
                format!(" for lifetime parameter {}in function call",
                        br_string(br))
            }
            infer::LateBoundRegion(_, br, infer::HigherRankedType) => {
                format!(" for lifetime parameter {}in generic type", br_string(br))
            }
            infer::LateBoundRegion(_, br, infer::AssocTypeProjection(def_id)) => {
                format!(" for lifetime parameter {}in trait containing associated type `{}`",
                        br_string(br), self.tcx.associated_item(def_id).name)
            }
            infer::EarlyBoundRegion(_, name) => {
                format!(" for lifetime parameter `{}`",
                        name)
            }
            infer::BoundRegionInCoherence(name) => {
                format!(" for lifetime parameter `{}` in coherence check",
                        name)
            }
            infer::UpvarRegion(ref upvar_id, _) => {
                let var_node_id = self.tcx.hir.hir_to_node_id(upvar_id.var_id);
                let var_name = self.tcx.hir.name(var_node_id);
                format!(" for capture of `{}` by closure", var_name)
            }
            infer::NLL(..) => bug!("NLL variable found in lexical phase"),
        };

        struct_span_err!(self.tcx.sess, var_origin.span(), E0495,
                  "cannot infer an appropriate lifetime{} \
                   due to conflicting requirements",
                  var_description)
    }
}

enum FailureCode {
    Error0317(&'static str),
    Error0580(&'static str),
    Error0308(&'static str),
    Error0644(&'static str),
}

impl<'tcx> ObligationCause<'tcx> {
    fn as_failure_code(&self, terr: &TypeError<'tcx>) -> FailureCode {
        use self::FailureCode::*;
        use traits::ObligationCauseCode::*;
        match self.code {
            CompareImplMethodObligation { .. } => Error0308("method not compatible with trait"),
            MatchExpressionArm { source, .. } => Error0308(match source {
                hir::MatchSource::IfLetDesugar{..} => "`if let` arms have incompatible types",
                _ => "match arms have incompatible types",
            }),
            IfExpression => Error0308("if and else have incompatible types"),
            IfExpressionWithNoElse => Error0317("if may be missing an else clause"),
            EquatePredicate => Error0308("equality predicate not satisfied"),
            MainFunctionType => Error0580("main function has wrong type"),
            StartFunctionType => Error0308("start function has wrong type"),
            IntrinsicType => Error0308("intrinsic has wrong type"),
            MethodReceiver => Error0308("mismatched method receiver"),

            // In the case where we have no more specific thing to
            // say, also take a look at the error code, maybe we can
            // tailor to that.
            _ => match terr {
                TypeError::CyclicTy(ty) if ty.is_closure() || ty.is_generator() =>
                    Error0644("closure/generator type that references itself"),
                _ =>
                    Error0308("mismatched types"),
            }
        }
    }

    fn as_requirement_str(&self) -> &'static str {
        use traits::ObligationCauseCode::*;
        match self.code {
            CompareImplMethodObligation { .. } => "method type is compatible with trait",
            ExprAssignable => "expression is assignable",
            MatchExpressionArm { source, .. } => match source {
                hir::MatchSource::IfLetDesugar{..} => "`if let` arms have compatible types",
                _ => "match arms have compatible types",
            },
            IfExpression => "if and else have compatible types",
            IfExpressionWithNoElse => "if missing an else returns ()",
            EquatePredicate => "equality where clause is satisfied",
            MainFunctionType => "`main` function has the correct type",
            StartFunctionType => "`start` function has the correct type",
            IntrinsicType => "intrinsic has the correct type",
            MethodReceiver => "method receiver has the correct type",
            _ => "types are compatible",
        }
    }
}