1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

use errors::DiagnosticBuilder;
use rustc_data_structures::stable_hasher::{HashStable, StableHasher,
                                           StableHashingContextProvider};
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_data_structures::indexed_vec::{Idx, IndexVec};
use std::cell::{Ref, RefCell};
use std::env;
use std::hash::Hash;
use std::rc::Rc;
use ty::TyCtxt;
use util::common::{ProfileQueriesMsg, profq_msg};

use ich::Fingerprint;

use super::debug::EdgeFilter;
use super::dep_node::{DepNode, DepKind, WorkProductId};
use super::query::DepGraphQuery;
use super::raii;
use super::safe::DepGraphSafe;
use super::serialized::{SerializedDepGraph, SerializedDepNodeIndex};
use super::prev::PreviousDepGraph;

#[derive(Clone)]
pub struct DepGraph {
    data: Option<Rc<DepGraphData>>,

    // At the moment we are using DepNode as key here. In the future it might
    // be possible to use an IndexVec<DepNodeIndex, _> here. At the moment there
    // are a few problems with that:
    // - Some fingerprints are needed even if incr. comp. is disabled -- yet
    //   we need to have a dep-graph to generate DepNodeIndices.
    // - The architecture is still in flux and it's not clear what how to best
    //   implement things.
    fingerprints: Rc<RefCell<FxHashMap<DepNode, Fingerprint>>>
}


newtype_index!(DepNodeIndex);

impl DepNodeIndex {
    const INVALID: DepNodeIndex = DepNodeIndex(::std::u32::MAX);
}

#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub enum DepNodeColor {
    Red,
    Green(DepNodeIndex)
}

impl DepNodeColor {
    pub fn is_green(self) -> bool {
        match self {
            DepNodeColor::Red => false,
            DepNodeColor::Green(_) => true,
        }
    }
}

struct DepGraphData {
    /// The new encoding of the dependency graph, optimized for red/green
    /// tracking. The `current` field is the dependency graph of only the
    /// current compilation session: We don't merge the previous dep-graph into
    /// current one anymore.
    current: RefCell<CurrentDepGraph>,

    /// The dep-graph from the previous compilation session. It contains all
    /// nodes and edges as well as all fingerprints of nodes that have them.
    previous: PreviousDepGraph,

    colors: RefCell<FxHashMap<DepNode, DepNodeColor>>,

    /// When we load, there may be `.o` files, cached mir, or other such
    /// things available to us. If we find that they are not dirty, we
    /// load the path to the file storing those work-products here into
    /// this map. We can later look for and extract that data.
    previous_work_products: RefCell<FxHashMap<WorkProductId, WorkProduct>>,

    /// Work-products that we generate in this run.
    work_products: RefCell<FxHashMap<WorkProductId, WorkProduct>>,

    dep_node_debug: RefCell<FxHashMap<DepNode, String>>,

    // Used for testing, only populated when -Zquery-dep-graph is specified.
    loaded_from_cache: RefCell<FxHashMap<DepNodeIndex, bool>>,
}

impl DepGraph {

    pub fn new(prev_graph: PreviousDepGraph) -> DepGraph {
        DepGraph {
            data: Some(Rc::new(DepGraphData {
                previous_work_products: RefCell::new(FxHashMap()),
                work_products: RefCell::new(FxHashMap()),
                dep_node_debug: RefCell::new(FxHashMap()),
                current: RefCell::new(CurrentDepGraph::new()),
                previous: prev_graph,
                colors: RefCell::new(FxHashMap()),
                loaded_from_cache: RefCell::new(FxHashMap()),
            })),
            fingerprints: Rc::new(RefCell::new(FxHashMap())),
        }
    }

    pub fn new_disabled() -> DepGraph {
        DepGraph {
            data: None,
            fingerprints: Rc::new(RefCell::new(FxHashMap())),
        }
    }

    /// True if we are actually building the full dep-graph.
    #[inline]
    pub fn is_fully_enabled(&self) -> bool {
        self.data.is_some()
    }

    pub fn query(&self) -> DepGraphQuery {
        let current_dep_graph = self.data.as_ref().unwrap().current.borrow();
        let nodes: Vec<_> = current_dep_graph.nodes.iter().cloned().collect();
        let mut edges = Vec::new();
        for (index, edge_targets) in current_dep_graph.edges.iter_enumerated() {
            let from = current_dep_graph.nodes[index];
            for &edge_target in edge_targets {
                let to = current_dep_graph.nodes[edge_target];
                edges.push((from, to));
            }
        }

        DepGraphQuery::new(&nodes[..], &edges[..])
    }

    pub fn in_ignore<'graph>(&'graph self) -> Option<raii::IgnoreTask<'graph>> {
        self.data.as_ref().map(|data| raii::IgnoreTask::new(&data.current))
    }

    pub fn with_ignore<OP,R>(&self, op: OP) -> R
        where OP: FnOnce() -> R
    {
        let _task = self.in_ignore();
        op()
    }

    /// Starts a new dep-graph task. Dep-graph tasks are specified
    /// using a free function (`task`) and **not** a closure -- this
    /// is intentional because we want to exercise tight control over
    /// what state they have access to. In particular, we want to
    /// prevent implicit 'leaks' of tracked state into the task (which
    /// could then be read without generating correct edges in the
    /// dep-graph -- see the module-level README for more details on the
    /// dep-graph). To this end, the task function gets exactly two
    /// pieces of state: the context `cx` and an argument `arg`. Both
    /// of these bits of state must be of some type that implements
    /// `DepGraphSafe` and hence does not leak.
    ///
    /// The choice of two arguments is not fundamental. One argument
    /// would work just as well, since multiple values can be
    /// collected using tuples. However, using two arguments works out
    /// to be quite convenient, since it is common to need a context
    /// (`cx`) and some argument (e.g., a `DefId` identifying what
    /// item to process).
    ///
    /// For cases where you need some other number of arguments:
    ///
    /// - If you only need one argument, just use `()` for the `arg`
    ///   parameter.
    /// - If you need 3+ arguments, use a tuple for the
    ///   `arg` parameter.
    pub fn with_task<C, A, R, HCX>(&self,
                                   key: DepNode,
                                   cx: C,
                                   arg: A,
                                   task: fn(C, A) -> R)
                                   -> (R, DepNodeIndex)
        where C: DepGraphSafe + StableHashingContextProvider<ContextType=HCX>,
              R: HashStable<HCX>,
    {
        self.with_task_impl(key, cx, arg, task,
            |data, key| data.borrow_mut().push_task(key),
            |data, key| data.borrow_mut().pop_task(key))
    }

    fn with_task_impl<C, A, R, HCX>(&self,
                                    key: DepNode,
                                    cx: C,
                                    arg: A,
                                    task: fn(C, A) -> R,
                                    push: fn(&RefCell<CurrentDepGraph>, DepNode),
                                    pop: fn(&RefCell<CurrentDepGraph>, DepNode) -> DepNodeIndex)
                                    -> (R, DepNodeIndex)
        where C: DepGraphSafe + StableHashingContextProvider<ContextType=HCX>,
              R: HashStable<HCX>,
    {
        if let Some(ref data) = self.data {
            debug_assert!(!data.colors.borrow().contains_key(&key));

            push(&data.current, key);
            if cfg!(debug_assertions) {
                profq_msg(ProfileQueriesMsg::TaskBegin(key.clone()))
            };

            // In incremental mode, hash the result of the task. We don't
            // do anything with the hash yet, but we are computing it
            // anyway so that
            //  - we make sure that the infrastructure works and
            //  - we can get an idea of the runtime cost.
            let mut hcx = cx.create_stable_hashing_context();

            let result = task(cx, arg);
            if cfg!(debug_assertions) {
                profq_msg(ProfileQueriesMsg::TaskEnd)
            };

            let dep_node_index = pop(&data.current, key);

            let mut stable_hasher = StableHasher::new();
            result.hash_stable(&mut hcx, &mut stable_hasher);

            let current_fingerprint = stable_hasher.finish();

            // Store the current fingerprint
            {
                let old_value = self.fingerprints
                                    .borrow_mut()
                                    .insert(key, current_fingerprint);
                debug_assert!(old_value.is_none(),
                              "DepGraph::with_task() - Duplicate fingerprint \
                               insertion for {:?}", key);
            }

            // Determine the color of the new DepNode.
            {
                let prev_fingerprint = data.previous.fingerprint_of(&key);

                let color = if Some(current_fingerprint) == prev_fingerprint {
                    DepNodeColor::Green(dep_node_index)
                } else {
                    DepNodeColor::Red
                };

                let old_value = data.colors.borrow_mut().insert(key, color);
                debug_assert!(old_value.is_none(),
                              "DepGraph::with_task() - Duplicate DepNodeColor \
                               insertion for {:?}", key);
            }

            (result, dep_node_index)
        } else {
            if key.kind.fingerprint_needed_for_crate_hash() {
                let mut hcx = cx.create_stable_hashing_context();
                let result = task(cx, arg);
                let mut stable_hasher = StableHasher::new();
                result.hash_stable(&mut hcx, &mut stable_hasher);
                let old_value = self.fingerprints
                                    .borrow_mut()
                                    .insert(key, stable_hasher.finish());
                debug_assert!(old_value.is_none(),
                              "DepGraph::with_task() - Duplicate fingerprint \
                               insertion for {:?}", key);
                (result, DepNodeIndex::INVALID)
            } else {
                (task(cx, arg), DepNodeIndex::INVALID)
            }
        }
    }

    /// Execute something within an "anonymous" task, that is, a task the
    /// DepNode of which is determined by the list of inputs it read from.
    pub fn with_anon_task<OP,R>(&self, dep_kind: DepKind, op: OP) -> (R, DepNodeIndex)
        where OP: FnOnce() -> R
    {
        if let Some(ref data) = self.data {
            data.current.borrow_mut().push_anon_task();
            let result = op();
            let dep_node_index = data.current
                                     .borrow_mut()
                                     .pop_anon_task(dep_kind);
            (result, dep_node_index)
        } else {
            (op(), DepNodeIndex::INVALID)
        }
    }

    /// Execute something within an "eval-always" task which is a task
    // that runs whenever anything changes.
    pub fn with_eval_always_task<C, A, R, HCX>(&self,
                                   key: DepNode,
                                   cx: C,
                                   arg: A,
                                   task: fn(C, A) -> R)
                                   -> (R, DepNodeIndex)
        where C: DepGraphSafe + StableHashingContextProvider<ContextType=HCX>,
              R: HashStable<HCX>,
    {
        self.with_task_impl(key, cx, arg, task,
            |data, key| data.borrow_mut().push_eval_always_task(key),
            |data, key| data.borrow_mut().pop_eval_always_task(key))
    }

    #[inline]
    pub fn read(&self, v: DepNode) {
        if let Some(ref data) = self.data {
            let mut current = data.current.borrow_mut();
            if let Some(&dep_node_index) = current.node_to_node_index.get(&v) {
                current.read_index(dep_node_index);
            } else {
                bug!("DepKind {:?} should be pre-allocated but isn't.", v.kind)
            }
        }
    }

    #[inline]
    pub fn read_index(&self, dep_node_index: DepNodeIndex) {
        if let Some(ref data) = self.data {
            data.current.borrow_mut().read_index(dep_node_index);
        }
    }

    #[inline]
    pub fn fingerprint_of(&self, dep_node: &DepNode) -> Fingerprint {
        match self.fingerprints.borrow().get(dep_node) {
            Some(&fingerprint) => fingerprint,
            None => {
                bug!("Could not find current fingerprint for {:?}", dep_node)
            }
        }
    }

    pub fn prev_fingerprint_of(&self, dep_node: &DepNode) -> Option<Fingerprint> {
        self.data.as_ref().unwrap().previous.fingerprint_of(dep_node)
    }

    #[inline]
    pub fn prev_dep_node_index_of(&self, dep_node: &DepNode) -> SerializedDepNodeIndex {
        self.data.as_ref().unwrap().previous.node_to_index(dep_node)
    }

    /// Indicates that a previous work product exists for `v`. This is
    /// invoked during initial start-up based on what nodes are clean
    /// (and what files exist in the incr. directory).
    pub fn insert_previous_work_product(&self, v: &WorkProductId, data: WorkProduct) {
        debug!("insert_previous_work_product({:?}, {:?})", v, data);
        self.data
            .as_ref()
            .unwrap()
            .previous_work_products
            .borrow_mut()
            .insert(v.clone(), data);
    }

    /// Indicates that we created the given work-product in this run
    /// for `v`. This record will be preserved and loaded in the next
    /// run.
    pub fn insert_work_product(&self, v: &WorkProductId, data: WorkProduct) {
        debug!("insert_work_product({:?}, {:?})", v, data);
        self.data
            .as_ref()
            .unwrap()
            .work_products
            .borrow_mut()
            .insert(v.clone(), data);
    }

    /// Check whether a previous work product exists for `v` and, if
    /// so, return the path that leads to it. Used to skip doing work.
    pub fn previous_work_product(&self, v: &WorkProductId) -> Option<WorkProduct> {
        self.data
            .as_ref()
            .and_then(|data| {
                data.previous_work_products.borrow().get(v).cloned()
            })
    }

    /// Access the map of work-products created during this run. Only
    /// used during saving of the dep-graph.
    pub fn work_products(&self) -> Ref<FxHashMap<WorkProductId, WorkProduct>> {
        self.data.as_ref().unwrap().work_products.borrow()
    }

    /// Access the map of work-products created during the cached run. Only
    /// used during saving of the dep-graph.
    pub fn previous_work_products(&self) -> Ref<FxHashMap<WorkProductId, WorkProduct>> {
        self.data.as_ref().unwrap().previous_work_products.borrow()
    }

    #[inline(always)]
    pub fn register_dep_node_debug_str<F>(&self,
                                          dep_node: DepNode,
                                          debug_str_gen: F)
        where F: FnOnce() -> String
    {
        let dep_node_debug = &self.data.as_ref().unwrap().dep_node_debug;

        if dep_node_debug.borrow().contains_key(&dep_node) {
            return
        }
        let debug_str = debug_str_gen();
        dep_node_debug.borrow_mut().insert(dep_node, debug_str);
    }

    pub(super) fn dep_node_debug_str(&self, dep_node: DepNode) -> Option<String> {
        self.data.as_ref().and_then(|t| t.dep_node_debug.borrow().get(&dep_node).cloned())
    }

    pub fn edge_deduplication_data(&self) -> (u64, u64) {
        let current_dep_graph = self.data.as_ref().unwrap().current.borrow();

        (current_dep_graph.total_read_count, current_dep_graph.total_duplicate_read_count)
    }

    pub fn serialize(&self) -> SerializedDepGraph {
        let fingerprints = self.fingerprints.borrow();
        let current_dep_graph = self.data.as_ref().unwrap().current.borrow();

        let nodes: IndexVec<_, _> = current_dep_graph.nodes.iter().map(|dep_node| {
            let fingerprint = fingerprints.get(dep_node)
                                          .cloned()
                                          .unwrap_or(Fingerprint::zero());
            (*dep_node, fingerprint)
        }).collect();

        let total_edge_count: usize = current_dep_graph.edges.iter()
                                                             .map(|v| v.len())
                                                             .sum();

        let mut edge_list_indices = IndexVec::with_capacity(nodes.len());
        let mut edge_list_data = Vec::with_capacity(total_edge_count);

        for (current_dep_node_index, edges) in current_dep_graph.edges.iter_enumerated() {
            let start = edge_list_data.len() as u32;
            // This should really just be a memcpy :/
            edge_list_data.extend(edges.iter().map(|i| SerializedDepNodeIndex::new(i.index())));
            let end = edge_list_data.len() as u32;

            debug_assert_eq!(current_dep_node_index.index(), edge_list_indices.len());
            edge_list_indices.push((start, end));
        }

        debug_assert!(edge_list_data.len() <= ::std::u32::MAX as usize);
        debug_assert_eq!(edge_list_data.len(), total_edge_count);

        SerializedDepGraph {
            nodes,
            edge_list_indices,
            edge_list_data,
        }
    }

    pub fn node_color(&self, dep_node: &DepNode) -> Option<DepNodeColor> {
        self.data.as_ref().and_then(|data| data.colors.borrow().get(dep_node).cloned())
    }

    pub fn try_mark_green<'tcx>(&self,
                                tcx: TyCtxt<'_, 'tcx, 'tcx>,
                                dep_node: &DepNode)
                                -> Option<DepNodeIndex> {
        debug!("try_mark_green({:?}) - BEGIN", dep_node);
        let data = self.data.as_ref().unwrap();

        debug_assert!(!data.colors.borrow().contains_key(dep_node));
        debug_assert!(!data.current.borrow().node_to_node_index.contains_key(dep_node));

        if dep_node.kind.is_input() {
            // We should only hit try_mark_green() for inputs that do not exist
            // anymore in the current compilation session. Existing inputs are
            // eagerly marked as either red/green before any queries are
            // executed.
            debug_assert!(dep_node.extract_def_id(tcx).is_none());
            debug!("try_mark_green({:?}) - END - DepNode is deleted input", dep_node);
            return None;
        }

        let (prev_deps, prev_dep_node_index) = match data.previous.edges_from(dep_node) {
            Some(prev) => {
                // This DepNode and the corresponding query invocation existed
                // in the previous compilation session too, so we can try to
                // mark it as green by recursively marking all of its
                // dependencies green.
                prev
            }
            None => {
                // This DepNode did not exist in the previous compilation session,
                // so we cannot mark it as green.
                debug!("try_mark_green({:?}) - END - DepNode does not exist in \
                        current compilation session anymore", dep_node);
                return None
            }
        };

        let mut current_deps = Vec::new();

        for &dep_dep_node_index in prev_deps {
            let dep_dep_node = &data.previous.index_to_node(dep_dep_node_index);

            let dep_dep_node_color = data.colors.borrow().get(dep_dep_node).cloned();
            match dep_dep_node_color {
                Some(DepNodeColor::Green(node_index)) => {
                    // This dependency has been marked as green before, we are
                    // still fine and can continue with checking the other
                    // dependencies.
                    debug!("try_mark_green({:?}) --- found dependency {:?} to \
                            be immediately green", dep_node, dep_dep_node);
                    current_deps.push(node_index);
                }
                Some(DepNodeColor::Red) => {
                    // We found a dependency the value of which has changed
                    // compared to the previous compilation session. We cannot
                    // mark the DepNode as green and also don't need to bother
                    // with checking any of the other dependencies.
                    debug!("try_mark_green({:?}) - END - dependency {:?} was \
                            immediately red", dep_node, dep_dep_node);
                    return None
                }
                None => {
                    // We don't know the state of this dependency. If it isn't
                    // an input node, let's try to mark it green recursively.
                    if !dep_dep_node.kind.is_input() {
                         debug!("try_mark_green({:?}) --- state of dependency {:?} \
                                 is unknown, trying to mark it green", dep_node,
                                 dep_dep_node);

                        if let Some(node_index) = self.try_mark_green(tcx, dep_dep_node) {
                            debug!("try_mark_green({:?}) --- managed to MARK \
                                    dependency {:?} as green", dep_node, dep_dep_node);
                            current_deps.push(node_index);
                            continue;
                        }
                    } else {
                        match dep_dep_node.kind {
                            DepKind::Hir |
                            DepKind::HirBody |
                            DepKind::CrateMetadata => {
                                if dep_node.extract_def_id(tcx).is_none() {
                                    // If the node does not exist anymore, we
                                    // just fail to mark green.
                                    return None
                                } else {
                                    // If the node does exist, it should have
                                    // been pre-allocated.
                                    bug!("DepNode {:?} should have been \
                                          pre-allocated but wasn't.",
                                          dep_dep_node)
                                }
                            }
                            _ => {
                                // For other kinds of inputs it's OK to be
                                // forced.
                            }
                        }
                    }

                    // We failed to mark it green, so we try to force the query.
                    debug!("try_mark_green({:?}) --- trying to force \
                            dependency {:?}", dep_node, dep_dep_node);
                    if ::ty::maps::force_from_dep_node(tcx, dep_dep_node) {
                        let dep_dep_node_color = data.colors
                                                     .borrow()
                                                     .get(dep_dep_node)
                                                     .cloned();
                        match dep_dep_node_color {
                            Some(DepNodeColor::Green(node_index)) => {
                                debug!("try_mark_green({:?}) --- managed to \
                                        FORCE dependency {:?} to green",
                                        dep_node, dep_dep_node);
                                current_deps.push(node_index);
                            }
                            Some(DepNodeColor::Red) => {
                                debug!("try_mark_green({:?}) - END - \
                                        dependency {:?} was red after forcing",
                                       dep_node,
                                       dep_dep_node);
                                return None
                            }
                            None => {
                                bug!("try_mark_green() - Forcing the DepNode \
                                      should have set its color")
                            }
                        }
                    } else {
                        // The DepNode could not be forced.
                        debug!("try_mark_green({:?}) - END - dependency {:?} \
                                could not be forced", dep_node, dep_dep_node);
                        return None
                    }
                }
            }
        }


        // If we got here without hitting a `return` that means that all
        // dependencies of this DepNode could be marked as green. Therefore we
        // can also mark this DepNode as green. We do so by...

        // ... allocating an entry for it in the current dependency graph and
        // adding all the appropriate edges imported from the previous graph ...
        let dep_node_index = data.current
                                 .borrow_mut()
                                 .alloc_node(*dep_node, current_deps);

        // ... copying the fingerprint from the previous graph too, so we don't
        // have to recompute it ...
        let fingerprint = data.previous.fingerprint_by_index(prev_dep_node_index);
        let old_fingerprint = self.fingerprints
                                  .borrow_mut()
                                  .insert(*dep_node, fingerprint);
        debug_assert!(old_fingerprint.is_none(),
                      "DepGraph::try_mark_green() - Duplicate fingerprint \
                      insertion for {:?}", dep_node);

        // ... emitting any stored diagnostic ...
        {
            let diagnostics = tcx.on_disk_query_result_cache
                                 .load_diagnostics(tcx, prev_dep_node_index);

            if diagnostics.len() > 0 {
                let handle = tcx.sess.diagnostic();

                // Promote the previous diagnostics to the current session.
                tcx.on_disk_query_result_cache
                   .store_diagnostics(dep_node_index, diagnostics.clone());

                for diagnostic in diagnostics {
                    DiagnosticBuilder::new_diagnostic(handle, diagnostic).emit();
                }
            }
        }

        // ... and finally storing a "Green" entry in the color map.
        let old_color = data.colors
                            .borrow_mut()
                            .insert(*dep_node, DepNodeColor::Green(dep_node_index));
        debug_assert!(old_color.is_none(),
                      "DepGraph::try_mark_green() - Duplicate DepNodeColor \
                      insertion for {:?}", dep_node);

        debug!("try_mark_green({:?}) - END - successfully marked as green", dep_node);
        Some(dep_node_index)
    }

    // Used in various assertions
    pub fn is_green(&self, dep_node_index: DepNodeIndex) -> bool {
        let dep_node = self.data.as_ref().unwrap().current.borrow().nodes[dep_node_index];
        self.data.as_ref().unwrap().colors.borrow().get(&dep_node).map(|&color| {
            match color {
                DepNodeColor::Red => false,
                DepNodeColor::Green(_) => true,
            }
        }).unwrap_or(false)
    }

    // This method loads all on-disk cacheable query results into memory, so
    // they can be written out to the new cache file again. Most query results
    // will already be in memory but in the case where we marked something as
    // green but then did not need the value, that value will never have been
    // loaded from disk.
    //
    // This method will only load queries that will end up in the disk cache.
    // Other queries will not be executed.
    pub fn exec_cache_promotions<'a, 'tcx>(&self, tcx: TyCtxt<'a, 'tcx, 'tcx>) {
        let green_nodes: Vec<DepNode> = {
            let data = self.data.as_ref().unwrap();
            data.colors.borrow().iter().filter_map(|(dep_node, color)| match color {
                DepNodeColor::Green(_) => {
                    if dep_node.cache_on_disk(tcx) {
                        Some(*dep_node)
                    } else {
                        None
                    }
                }
                DepNodeColor::Red => {
                    // We can skip red nodes because a node can only be marked
                    // as red if the query result was recomputed and thus is
                    // already in memory.
                    None
                }
            }).collect()
        };

        for dep_node in green_nodes {
            dep_node.load_from_on_disk_cache(tcx);
        }
    }

    pub fn mark_loaded_from_cache(&self, dep_node_index: DepNodeIndex, state: bool) {
        debug!("mark_loaded_from_cache({:?}, {})",
               self.data.as_ref().unwrap().current.borrow().nodes[dep_node_index],
               state);

        self.data
            .as_ref()
            .unwrap()
            .loaded_from_cache
            .borrow_mut()
            .insert(dep_node_index, state);
    }

    pub fn was_loaded_from_cache(&self, dep_node: &DepNode) -> Option<bool> {
        let data = self.data.as_ref().unwrap();
        let dep_node_index = data.current.borrow().node_to_node_index[dep_node];
        data.loaded_from_cache.borrow().get(&dep_node_index).cloned()
    }
}

/// A "work product" is an intermediate result that we save into the
/// incremental directory for later re-use. The primary example are
/// the object files that we save for each partition at code
/// generation time.
///
/// Each work product is associated with a dep-node, representing the
/// process that produced the work-product. If that dep-node is found
/// to be dirty when we load up, then we will delete the work-product
/// at load time. If the work-product is found to be clean, then we
/// will keep a record in the `previous_work_products` list.
///
/// In addition, work products have an associated hash. This hash is
/// an extra hash that can be used to decide if the work-product from
/// a previous compilation can be re-used (in addition to the dirty
/// edges check).
///
/// As the primary example, consider the object files we generate for
/// each partition. In the first run, we create partitions based on
/// the symbols that need to be compiled. For each partition P, we
/// hash the symbols in P and create a `WorkProduct` record associated
/// with `DepNode::TransPartition(P)`; the hash is the set of symbols
/// in P.
///
/// The next time we compile, if the `DepNode::TransPartition(P)` is
/// judged to be clean (which means none of the things we read to
/// generate the partition were found to be dirty), it will be loaded
/// into previous work products. We will then regenerate the set of
/// symbols in the partition P and hash them (note that new symbols
/// may be added -- for example, new monomorphizations -- even if
/// nothing in P changed!). We will compare that hash against the
/// previous hash. If it matches up, we can reuse the object file.
#[derive(Clone, Debug, RustcEncodable, RustcDecodable)]
pub struct WorkProduct {
    pub cgu_name: String,
    /// Saved files associated with this CGU
    pub saved_files: Vec<(WorkProductFileKind, String)>,
}

#[derive(Clone, Copy, Debug, RustcEncodable, RustcDecodable)]
pub enum WorkProductFileKind {
    Object,
    Bytecode,
    BytecodeCompressed,
}

pub(super) struct CurrentDepGraph {
    nodes: IndexVec<DepNodeIndex, DepNode>,
    edges: IndexVec<DepNodeIndex, Vec<DepNodeIndex>>,
    node_to_node_index: FxHashMap<DepNode, DepNodeIndex>,
    task_stack: Vec<OpenTask>,
    forbidden_edge: Option<EdgeFilter>,

    // Anonymous DepNodes are nodes the ID of which we compute from the list of
    // their edges. This has the beneficial side-effect that multiple anonymous
    // nodes can be coalesced into one without changing the semantics of the
    // dependency graph. However, the merging of nodes can lead to a subtle
    // problem during red-green marking: The color of an anonymous node from
    // the current session might "shadow" the color of the node with the same
    // ID from the previous session. In order to side-step this problem, we make
    // sure that anon-node IDs allocated in different sessions don't overlap.
    // This is implemented by mixing a session-key into the ID fingerprint of
    // each anon node. The session-key is just a random number generated when
    // the DepGraph is created.
    anon_id_seed: Fingerprint,

    total_read_count: u64,
    total_duplicate_read_count: u64,
}

impl CurrentDepGraph {
    fn new() -> CurrentDepGraph {
        use std::time::{SystemTime, UNIX_EPOCH};

        let duration = SystemTime::now().duration_since(UNIX_EPOCH).unwrap();
        let nanos = duration.as_secs() * 1_000_000_000 +
                    duration.subsec_nanos() as u64;
        let mut stable_hasher = StableHasher::new();
        nanos.hash(&mut stable_hasher);

        let forbidden_edge = if cfg!(debug_assertions) {
            match env::var("RUST_FORBID_DEP_GRAPH_EDGE") {
                Ok(s) => {
                    match EdgeFilter::new(&s) {
                        Ok(f) => Some(f),
                        Err(err) => bug!("RUST_FORBID_DEP_GRAPH_EDGE invalid: {}", err),
                    }
                }
                Err(_) => None,
            }
        } else {
            None
        };

        CurrentDepGraph {
            nodes: IndexVec::new(),
            edges: IndexVec::new(),
            node_to_node_index: FxHashMap(),
            anon_id_seed: stable_hasher.finish(),
            task_stack: Vec::new(),
            forbidden_edge,
            total_read_count: 0,
            total_duplicate_read_count: 0,
        }
    }

    pub(super) fn push_ignore(&mut self) {
        self.task_stack.push(OpenTask::Ignore);
    }

    pub(super) fn pop_ignore(&mut self) {
        let popped_node = self.task_stack.pop().unwrap();
        debug_assert_eq!(popped_node, OpenTask::Ignore);
    }

    pub(super) fn push_task(&mut self, key: DepNode) {
        self.task_stack.push(OpenTask::Regular {
            node: key,
            reads: Vec::new(),
            read_set: FxHashSet(),
        });
    }

    pub(super) fn pop_task(&mut self, key: DepNode) -> DepNodeIndex {
        let popped_node = self.task_stack.pop().unwrap();

        if let OpenTask::Regular {
            node,
            read_set: _,
            reads
        } = popped_node {
            assert_eq!(node, key);

            // If this is an input node, we expect that it either has no
            // dependencies, or that it just depends on DepKind::CrateMetadata
            // or DepKind::Krate. This happens for some "thin wrapper queries"
            // like `crate_disambiguator` which sometimes have zero deps (for
            // when called for LOCAL_CRATE) or they depend on a CrateMetadata
            // node.
            if cfg!(debug_assertions) {
                if node.kind.is_input() && reads.len() > 0 &&
                   // FIXME(mw): Special case for DefSpan until Spans are handled
                   //            better in general.
                   node.kind != DepKind::DefSpan &&
                    reads.iter().any(|&i| {
                        !(self.nodes[i].kind == DepKind::CrateMetadata ||
                          self.nodes[i].kind == DepKind::Krate)
                    })
                {
                    bug!("Input node {:?} with unexpected reads: {:?}",
                        node,
                        reads.iter().map(|&i| self.nodes[i]).collect::<Vec<_>>())
                }
            }

            self.alloc_node(node, reads)
        } else {
            bug!("pop_task() - Expected regular task to be popped")
        }
    }

    fn push_anon_task(&mut self) {
        self.task_stack.push(OpenTask::Anon {
            reads: Vec::new(),
            read_set: FxHashSet(),
        });
    }

    fn pop_anon_task(&mut self, kind: DepKind) -> DepNodeIndex {
        let popped_node = self.task_stack.pop().unwrap();

        if let OpenTask::Anon {
            read_set: _,
            reads
        } = popped_node {
            debug_assert!(!kind.is_input());

            let mut fingerprint = self.anon_id_seed;
            let mut hasher = StableHasher::new();

            for &read in reads.iter() {
                let read_dep_node = self.nodes[read];

                ::std::mem::discriminant(&read_dep_node.kind).hash(&mut hasher);

                // Fingerprint::combine() is faster than sending Fingerprint
                // through the StableHasher (at least as long as StableHasher
                // is so slow).
                fingerprint = fingerprint.combine(read_dep_node.hash);
            }

            fingerprint = fingerprint.combine(hasher.finish());

            let target_dep_node = DepNode {
                kind,
                hash: fingerprint,
            };

            if let Some(&index) = self.node_to_node_index.get(&target_dep_node) {
                index
            } else {
                self.alloc_node(target_dep_node, reads)
            }
        } else {
            bug!("pop_anon_task() - Expected anonymous task to be popped")
        }
    }

    fn push_eval_always_task(&mut self, key: DepNode) {
        self.task_stack.push(OpenTask::EvalAlways { node: key });
    }

    fn pop_eval_always_task(&mut self, key: DepNode) -> DepNodeIndex {
        let popped_node = self.task_stack.pop().unwrap();

        if let OpenTask::EvalAlways {
            node,
        } = popped_node {
            debug_assert_eq!(node, key);
            let krate_idx = self.node_to_node_index[&DepNode::new_no_params(DepKind::Krate)];
            self.alloc_node(node, vec![krate_idx])
        } else {
            bug!("pop_eval_always_task() - Expected eval always task to be popped");
        }
    }

    fn read_index(&mut self, source: DepNodeIndex) {
        match self.task_stack.last_mut() {
            Some(&mut OpenTask::Regular {
                ref mut reads,
                ref mut read_set,
                node: ref target,
            }) => {
                self.total_read_count += 1;
                if read_set.insert(source) {
                    reads.push(source);

                    if cfg!(debug_assertions) {
                        if let Some(ref forbidden_edge) = self.forbidden_edge {
                            let source = self.nodes[source];
                            if forbidden_edge.test(&source, &target) {
                                bug!("forbidden edge {:?} -> {:?} created",
                                     source,
                                     target)
                            }
                        }
                    }
                } else {
                    self.total_duplicate_read_count += 1;
                }
            }
            Some(&mut OpenTask::Anon {
                ref mut reads,
                ref mut read_set,
            }) => {
                if read_set.insert(source) {
                    reads.push(source);
                }
            }
            Some(&mut OpenTask::Ignore) |
            Some(&mut OpenTask::EvalAlways { .. }) | None => {
                // ignore
            }
        }
    }

    fn alloc_node(&mut self,
                  dep_node: DepNode,
                  edges: Vec<DepNodeIndex>)
                  -> DepNodeIndex {
        debug_assert_eq!(self.edges.len(), self.nodes.len());
        debug_assert_eq!(self.node_to_node_index.len(), self.nodes.len());
        debug_assert!(!self.node_to_node_index.contains_key(&dep_node));
        let dep_node_index = DepNodeIndex::new(self.nodes.len());
        self.nodes.push(dep_node);
        self.node_to_node_index.insert(dep_node, dep_node_index);
        self.edges.push(edges);
        dep_node_index
    }
}

#[derive(Clone, Debug, PartialEq)]
enum OpenTask {
    Regular {
        node: DepNode,
        reads: Vec<DepNodeIndex>,
        read_set: FxHashSet<DepNodeIndex>,
    },
    Anon {
        reads: Vec<DepNodeIndex>,
        read_set: FxHashSet<DepNodeIndex>,
    },
    Ignore,
    EvalAlways {
        node: DepNode,
    },
}